• Title/Summary/Keyword: vertical current structure

Search Result 215, Processing Time 0.023 seconds

Application of the Ventilation Theory to the East Sea

  • Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.8-16
    • /
    • 1997
  • The ventilation theory developed by Luyten, Pedlosky and Stommel (1983) is applied to the East Sea to understand the general circulation pattern of the Intermediate Water, especially the ventilated circulation beneath the Tsushima Warm Current. The original model is slightly modified such that it takes the inflow-outflow of the Tsushima Current into consideration. Results of the model indicate that for sufficiently strong Ekman pumping, the Intermediate Water circulates cyclonically by ventilation. The Intermediate Water subducts beneath the Tsushima Warm Water through the western boundary layer. Off the western boundary layer, it turns northward, outcrops to the north by passing the polar front and continues to flow northward until it finally is absorbed by the northern boundary layer. This result seems to be compatible with some recent observations. Over the ventilated area, the transport of the Tsushima Current is negligible and most transport occurs in the shadow area where the Intermediate layer is motionless indicating that, over the deep motionless layer, the two-layered vertical structure under consideration becomes substantially single-layered.

  • PDF

Simulation of the Temperature and Salinity Along $36^{\circ}N$ in the Yellow Sea with a Wave-Current Coupled Model

  • Qiao, Fangli;Ma, Ji-An;Yang, Yong-Zeng;Yuan, Yeli
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Based on the MASNUM wave-current coupled model, the temperature and salinity structures along $36^{\circ}N$ in the Yellow Sea are simulated and compared with observations. Both the position and strength of the simulated thermocline are similar to data analysis. The wave-induced mixing is strongest in winter and plays a key role in the formation of the upper mixed layer in spring and summer. Numerical experiments suggest that in the coastal area, wave-induced mixing and tidal mixing control the vertical structure of temperature and salinity.

ONE TYPE OF EDDY DEVELOPMENT IN THE NORTHEASTERN KUROSHIO BRANCH

  • Bulatov, Nafanail V.;Kapshiter, Alexander V.;Obukhova, Natalya G.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.926-929
    • /
    • 2006
  • Some features of vertical structure of the frontal interaction zone of the warm Kuroshio Current and cold Oyashio Current are known from 1930 from analysis of ship data. Ship data however do not allow carrying out the area detailed survey opposite to satellite infrared (IR) observations which possess by high spatial and temporal resolution. Analysis of NOAA AVHRR IR images demonstrated that process of formation and development of the Kuroshio warm core rings is highly complex. They are formed as a result of development of anticyclonic meanders of the warm Kuroshio waters and spin off them from the current. Joint analysis of thermal infrared images and altimetry data has also indicated that interaction of eddies to the frontal zone plays a crucial role in formation of large eddies moving to the Southern Kuril region.

  • PDF

3-DIMENSIONAL TILING TECHNIQUE TO PROCESS HUGE SIZE HIGH RESOLUTION SATELLITE IMAGE SEAMLESSLY AND RAPIDLY

  • Jung, Chan-Gyu;Kim, Jun-Chul;Hwang, Hyun-Deok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.85-89
    • /
    • 2007
  • This paper presents the method to provide a fast service for user in image manipulation such as zooming and panning of huge size high resolution satellite image (e.g. Giga bytes per scene). The proposed technique is based on the hierarchical structure that has 3D-Tiling in horizontal and vertical direction to provide the image service more effectively than 2D-Tiling technique in the past does. The essence of the proposed technique is to create tiles that have optimum level of horizontal as well as vertical direction on the basis of current displaying area which changes as user manipulates huge image. So this technique provides seamless service, and will be very powerful and useful for manipulation of images of huge size without data conversion.

  • PDF

Quasi-Continuous Operation of 1.55- μm Vertical-Cavity Surface-Emitting Lasers by Wafer Fusion

  • Song, Dae-Sung;Song, Hyun-Woo;Kim, Chang-Kyu;Lee, Young-Hee;Kim, Jung-Su
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • Room temperature quasi-continuous operation is achieved near 1556 nm with threshold current as low as 2.2 mA from a 5.6-${\mu}{\textrm}{m}$ oxide-aperture vertical-cavity surface-emitting laser. Wafer fusion techniques are employed to combine the GaAs/AlGaAs mirror and the InP-based InGaAs/InGaAsP active layer. In this structure, an $Al_x/O_y$/GaAs distributed bragg reflector and intra-cavity contacts are used to reduce free carrier absorption.

Properties of Recessed Polysilicon/Silicon($n^{+}$) - Silicon(P) Junction with Process Condition (공정조건에 따른 함몰된 다결정실리콘/실리콘($n^{+}$) - 실리콘(p) 접합의 특성)

  • 이종호;최우성;박춘배;이종덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.152-153
    • /
    • 1994
  • A recessed $n^{+}$-p junction diode with the serf-aligned structure is proposed and fabricated by using the polysilicon as an $n^{+}$ diffusion source. The diode structure can be applicable to the emitter-base formation of high performance bipolar device and the $n^{+}$ polysilicon emitter has an important effect on the device characteristics. The considered parameters for the polysilicon formation are the deposition condition $As^{+}$ dose for the doping of the polysilicon, and the annealing using RTP system. The vertical depth profiles of the fabricated diode are obtained by SIMS. The eleotrical characteristics are analyzed in trims of the ideality factor of diode (n), contact resistance arid reverse leakage current. The $As_{+}$ dose for the formation of good junction is current. The $As^{+}$ dose for the formation of goodjunctions is about 1∼2${\times}$$10^{16}$$cm^{-2}$ at given RTA condition ($1100^{\circ}C$, 10 sec). The $n^{+}$-p structure is successfully applied to the self-aligned bipolar device adopting a single polysilicon technology.

  • PDF

ASG(Amorphous Silicon TFT Gate driver circuit) Technology for Mobile TFT-LCD Panel

  • Jeon, Jin;Lee, Won-Kyu;Song, Jun-Ho;Kim, Hyung-Guel
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-398
    • /
    • 2004
  • We developed an a-Si TFT-LCD panel with integrated gate driver circuit using a standard 5-MASK process. To minimize the effect of the a-Si TFT current and LC's capacitance variation with temperature, we developed a new a-Si TFT circuit structure and minimized coupling capacitance by changing vertical architecture above gate driver circuit. Integration of gate driver circuit on glass substrate enables single chip and 3-side free panel structure in a-Si TFT-LCD of QVGA(240$^{\ast}$320) resolution. And using double ASG structure the dead space of TFT-LCD panel could be further decreased.

  • PDF

Utilization of Energy in the Sea Water of the Southeastern Yellow Sea (한국남서해의 열 에너지 이용)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.113-116
    • /
    • 1978
  • To ascertain the feasibility of the energy utilization in the sea adjacent to Korea, the distribution of the vertical temperature difference and the seasonal variation in the southeastern Yellow Sea are studied in relation to the sea water circulation. In summer, a region of high vertical temperature difference of approximately 16$^{\circ}C$ was found at a distance of approximately 40 miles from the western coast of Korea. It is located at the west of 125${\circ}$ 30`E and at the north of 34${\circ}$N. The vertical temperature structure is sustained by the inflow of Yellow Sea Warm Current water, the warming of the surface water of the Yellow Sea and the periodical renewal of the Yellow Sea Cold Water. It may be stated that power can be obtained from the sea water by making the use of the temperature difference. The vertical temperature difference was around 14$^{\circ}C$ in the western and southern waters of Jejudo Island. The vertical temperature difference decreases in autumn, and disappears due chiefly to the vigorous convective vertical mixing in winter when the northwest monsoon prevails. The power can be obtained from sea throughout the year, if power generation by the temperature difference is combined with that by wind and wave, and systemized in such a way that the former is employed in the hot season of summer, while the latter in winter and spring.

  • PDF

Calculation of Joule Heat and Temperature Distribution Generated on the Superconduction Magnet Structure for the KSTAR Operation Scenarios (KSTAR 운전시나리오에 대해 초전도자석 구조물에 발생되는 줄열 및 온도분포 계산)

  • Seungyon Cho;Jeong Woo Sa;Chang Ho Choi;KSTAR Team
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.56-59
    • /
    • 2002
  • Since the KSTAR magnet structure should be maintained at cryogenic temperature of about 4.5 K, even a small amount of heat might be a major cause of the temperature rising of the superconducting magnet structure. The Joule heating by eddy current induced on the magnet structure during the KSTAR operation was found to be a critical parameter for designing the cooling scheme of the magnet structure as well as defining the requirements of the refrigerator for the cryogenic system. Based on the Joule heating calculation, it was revealed that the bulk temperature rising of the magnet coil structure was less than 1 K. The local maximum temperature especially at the inboard leg of the TF coil structure increase as high as about 21 K for the plasma vertical disruption scenario. For the CS coil structure maximum temperature of 8.4 K was obtained from PF fast discharging scenario.

  • PDF

Optimization of Double Gate Vertical Channel Tunneling Field Effect Transistor (DVTFET) with Dielectric Sidewall

  • WANG, XIANGYU;Cho, Wonhee;Baac, Hyoung Won;Seo, Dongsun;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.192-198
    • /
    • 2017
  • In this paper, we propose a novel double gate vertical channel tunneling field effect transistor (DVTFET) with a dielectric sidewall and optimization characteristics. The dielectric sidewall is applied to the gate region to reduced ambipolar voltage ($V_{amb}$) and double gate structure is applied to improve on-current ($I_{ON}$) and subthreshold swing (SS). We discussed the fin width ($W_S$), body doping concentration, sidewall width ($W_{side}$), drain and gate underlap distance ($X_d$), source doping distance ($X_S$) and pocket doping length ($X_P$) of DVTFET. Each of device performance is investigated with various device parameter variations. To maximize device performance, we apply the optimum values obtained in the above discussion of a optimization simulation. The optimum results are steep SS of 32.6 mV/dec, high $I_{ON}$ of $1.2{\times}10^{-3}A/{\mu}m$ and low $V_{amb}$ of -2.0 V.