• 제목/요약/키워드: vertical construction joint

검색결과 73건 처리시간 0.021초

Slip Form과 Deck Plate를 채용한 벽식 APT의 접합부 Detail개발의 기초적 연구 (The basic study of the detail development of the Wall-type APT joint using Slip Form and Deck plate.)

  • 이희두;박신;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.127-132
    • /
    • 2003
  • The purpose of current study is about how to construct wall-type APT in slip form and Deck plate applied different connection of materials that wall and slab. A proposal construct's solution is using the continuous a binding string that the main of contents are slab or stairs which horizon structure part construction is joined the vertical structure part, new we Proposed of 2 solution that new technology development. We'll suggest that the development is in the construct of higher stories APT more better other construction method. We expect that the new method is good but we have many things to solute themes. Thus, we decided that this development contents are needed that correct structural investigation and constructor's security of speciality and through a fact construct, correct verification.

  • PDF

컨테이너 임시교사의 품질개선방안 (Measures for Improving the Quality of Temporary Container Classrooms)

  • 유병재;방홍순;이종성;김옥규
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.38-39
    • /
    • 2021
  • The use of temporary container classrooms has increased in recent years due to the development of the construction industry and renovation or rehabilitation of schools. Therefore, various problems, such as errors during assembling, design and insulation issues, and noise problems, have surfaced during the construction of temporary container classrooms. This study analyzes the causes of assembly errors during the manufacturing and installation processes to improve the quality of temporary container classrooms. Assembly errors are caused by non-level planes and inaccurate cutting during the manufacturing process. In the installation process, poor leveling is a major factor that causes errors during the assembly of temporary container classrooms. These causes result in uneven horizontal or vertical planes and uneven height. To solve these problems, quality improvement measures, such as pin connection, jig, joint coupling, and surface plates are proposed in this study.

  • PDF

신ㆍ구 콘크리트 접착제의 시공조건에 따른 성능 (Performance of Adhesives for Bonding Fresh Concrete to Hardened Concrete under Application Conditions)

  • 이찬영;심재원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.513-518
    • /
    • 2002
  • In vertical construction joint, adhesives such as epoxy, acrylic, latex, etc. have been usually used for bonding fresh concrete to hardened concrete. In this study, performance of adhesives under various application conditions was investigated through tests for slant shear and flexural strength. From the results of the tests, it is found that superior bonding performance can be obtained under good surface preparation without adhesive when high strength concrete is used.

  • PDF

Mechanical properties of new stainless steel-aluminum alloy composite joint in tower structures

  • Yingying Zhang;Qiu Yu;Wei Song;Junhao Xu;Yushuai Zhao;Baorui Sun
    • Steel and Composite Structures
    • /
    • 제49권5호
    • /
    • pp.517-532
    • /
    • 2023
  • Tower structures have been widely used in communication and transmission engineering. The failure of joints is the leading cause of structure failure, which make it play a crucial role in tower structure engineering. In this study, the aluminum alloy three tube tower structure is taken as the prototype, and the middle joint of the tower was selected as the research object. Three different stainless steel-aluminum alloy composite joints (SACJs), denoted by TA, TB and TC, were designed. Finite element (FE) modeling analysis was used to compare and determine the TC joint as the best solution. Detail requirements of fasteners in the TC stainless steel-aluminum alloy composite joint (TC-SACJ) were designed and verified. In order to systematically and comprehensively study the mechanical properties of TC-SACJ under multi-directional loading conditions, the full-scale experiments and FE simulation models were all performed for mechanical response analysis. The failure modes, load-carrying capacities, and axial load versus displacement/stain testing curves of all full-scale specimens under tension/compression loading conditions were obtained. The results show that the maximum vertical displacement of aluminum alloy tube is 26.9mm, and the maximum lateral displacement of TC-SACJs is 1.0 mm. In general, the TC-SACJs are in an elastic state under the design load, which meet the design requirements and has a good safety reserve. This work can provide references for the design and engineering application of aluminum alloy tower structures.

원자로건물 외벽 타설 높이 산정을 위한 수화열 해석 (Analysis on Heat of Hydration for Height of Shell Concrete Pouring in Reactor Containment Building)

  • 김좌영;박종혁;이한우;방창준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.165-166
    • /
    • 2012
  • A thermal stresses by heat of hydration was analyzed according to a change of a pour height in reactor containment building. In case of more than 3.6m pouring height a crack index by heat of hydration analysis resulted in less than 1 because there is not a construction joint of vertical direction and for a self-restraint effect of circumferential section shape. Therefore detailed consideration on a mixture proportion of binder type, quantity in concrete and selection of a form in seasonal air temperature is needed for a control of tensile stress by heat of hydration.

  • PDF

Behavior of F shape non-persistent joint under experimental and numerical uniaxial compression test

  • Sarfarazi, Vahab;Asgari, Kaveh;Zarei, Meisam;Ghalam, Erfan Zarrin
    • Advances in concrete construction
    • /
    • 제13권 2호
    • /
    • pp.199-213
    • /
    • 2022
  • Experimental and discrete element approaches were used to examine the effects of F shape non-persistent joints on the failure behaviour of concrete under uniaxial compressive test. concrete specimens with dimensions of 200 cm×200 cm×50 cm were provided. Within the specimen, F shape non-persistent joint consisting three joints were provided. The large joint length was 6 cm, and the length of two small joints were 2 cm. Vertical distance between two small joints change from 1.5 cm to 4.5 cm with increment of 1.5 cm. In constant joint lengths, the angle of large joint change from 0° to 90° with increments of 30°. Totally 12 different models were tested under compression test. The axial load rate on the model was 0.05 mm/min. Concurrent with experimental tests, numerical simulation (Particle flow code in two dimension) were performed on the models containing F shape non-persistent joint. Distance between small joints and joint angles were similar to experimental one. the results indicated that the failure process was mostly governed by both of the Distance between small joints and joint angles. The axial loading rate on the model was 0.05 mm/min. The compressive strengths of the samples were related to the fracture pattern and failure mechanism of the discontinuities. Furthermore, it was shown that the compressive behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint angle. In the first, there were only a few acoustic emission (AE) hits in the initial stage of loading, and then AE hits rapidly grow before the applied stress reached its peak. Furthermore, a large number of AE hits accompanied every stress drop. Finally, the failure pattern and failure strength are similar in both approaches i.e., the experimental testing and the numerical simulation approaches.

콘크리트피복 원형충전강관 기둥-강재보 접합부에 대한 반복하중실험 (Cyclic Loading Test for Composite Beam-Column Joints using Circular CEFT Columns)

  • 이호준;박홍근;최인락
    • 한국강구조학회 논문집
    • /
    • 제29권6호
    • /
    • pp.411-422
    • /
    • 2017
  • 본 연구에서는 콘크리트피복 원형충전강관 기둥을 적용한 합성구조 접합부의 거동특성과 내진성능을 평가하기 위하여, 기둥-플랜지 접합부에 대한 인장실험과 보-기둥 접합부에 대한 반복하중 실험을 수행하였다. 기둥-플랜지 인장실험은 피복콘크리트의 유무와 플랜지 폭, 인장철근 보강을 변수로 하여 5개의 실험체에 대하여 하중재하능력과 파괴모드를 분석하였다. 실험결과, 접합부에서의 플랜지 단부 폭을 200mm에서 350mm로 증가시킬 경우 연결부의 강도 및 강성이 각각 1.61배와 1.56배가 증가했고, 인장철근을 보강할 경우 추가적으로 강성과 강도가 각각 1.35배와 1.92배 증가했다. 접합부 반복하중 실험에서는 접합 상세를 변수로 3개의 외부접합부 실험체를 구성했다. 접합부 보강상세로는 인장철근 보강과 강관의 두께, 수직강판 보강을 고려하였다. 모든 접합부 실험체는 보에서 뚜렷한 휨항복이 발생하였으며 접합부의 손상은 제한적이었다. 특히, 강재보가 강관에 직접 용접되는 경우 보의 웨브를 통해서도 하중이 전달되기 때문에, 플랜지 인장실험 결과보다 보수적인 설계가 가능하며, 접합부 강관 두께를 증가시키거나 수직강판으로 보강한 경우에는 추가적으로 패널존의 전단내력이 증가하는 것으로 나타났다.

철근콘크리트 기둥과 철골 보 합성구조 접합부 시스템 개발 (Development of Reinforced Concrete Column and Steel Beam Composite Joints)

  • 김도균;정하선;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.691-698
    • /
    • 2001
  • Recent trends in the construction of long span or tall building frames feature the increase use of composite members that steel and concrete is functioning together in what terms of mixed structural systems. One of such systems, RCS (reinforced concrete column and steel beam) system is introduced and closely examined focusing on bearing strength of the composite joint in this paper. The main objective of this study was to develope detail to increase bearing capacity while bearing failure is one of the two primary modes of failure in RCS system. The results show that specimens with the U-type bearing reinforcement detail developed in this study enhanced the bearing strength by 1.20-1.50. The U-type reinforcement is the effective details to increase joint bearing strength compared to others like vertical reinforcement welded to beam flanges.

  • PDF

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • 국제초고층학회논문집
    • /
    • 제3권1호
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • 국제초고층학회논문집
    • /
    • 제7권3호
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.