• Title/Summary/Keyword: vertical breakwaters

Search Result 53, Processing Time 0.027 seconds

Effects of vertical wall and tetrapod weights on wave overtopping in rubble mound breakwaters under irregular wave conditions

  • Park, Sang Kil;Dodaran, Asgar Ahadpour;Han, Chong Soo;Shahmirzadi, Mohammad Ebrahim Meshkati
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.947-964
    • /
    • 2014
  • Rubble mound breakwaters protect the coastal line against severe erosion caused by wave action. This study examined the performance of different sizes and properties (i.e. height of vertical wall and tetrapod size) of rubble mound breakwaters on reducing the overtopping discharge. The physical model used in this study was derived based on an actual rubble mound in Busan Yacht Harbor. This research attempts to fill the gap in practical knowledge on the combined effect of the armor roughness and vertical wall on wave overtopping in rubble mound breakwaters. The main governing parameters used in this study were the vertical wall height, variation of the tetrapod weights, initial water level elevation, and the volume of overtopping under constant wave properties. The experimental results showed that the roughness factor differed according to the tetrapod size. Furthermore, the overtopping discharge with no vertical wall was similar to that with relatively short vertical walls (${\gamma}_v=1$). Therefore, the experimental results highlight the importance of the height of the vertical wall in reducing overtopping discharge. Moreover, a large tetrapod size may allow coastal engineers to choose a shorter vertical wall to save cost, while obtaining better performance.

Analysis of Stem Wave due to Long Breakwaters at the Entrance Channel

  • Kwon, Seong-Min;Moon, Seung-Hyo;Lee, Sang-Heon;Yoo, Jae-Woong;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • Recently, a new port reserves deep water depth for safe navigation and mooring, following the trend of larger ship building. Larger port facilities include long and huge breakwaters, and mainly adopt vertical type considering low construction cost. A vertical breakwater creates stem waves combining inclined incident waves and reflected waves, and this causes maneuvering difficulty to the passing vessels, and erosion of shoreline with additional damages to berthing facilities. Thus, in this study, the researchers have investigated the response of stem waves at the vertical breakwater near the entrance channel and applied numerical models, which are commonly used for the analysis of wave response at the harbor design. The basic equation composing models here adopted both the linear parabolic approximation adding the nonlinear dispersion relationship and nonlinear parabolic approximation adding a linear dispersion relationship. To analyze the applicability of both models, the research compared the numerical results with the existing hydraulic model results. The gap of serial breakwaters and aligned angles caused more complicated stem wave generation and secondary stem wave was found through the breakwater gap. Those analyzed results should be applied to ship handling simulation studies at the approaching channels, along with the mooring test.

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters (직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.2
    • /
    • pp.154-162
    • /
    • 2011
  • A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

Modeling of Fine Sediment Transport under Multiple Breakwaters of Surface-Piercing Type

  • Lee, J. L.;Oh, M. R.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.557-562
    • /
    • 2004
  • A surface-piercing barrier model is presented for understanding morphological development in the sheltered region and investigating the main factors causing the severe accumulation. Surface-piercing structures like vertical barriers, surface docks and floating breakwaters are recently favored from the point of view of a marine scenario since they do not in general partition the natural sea. The numerical solutions are compared with experimental data on wave profiles and morphological change rates within a rectangular harbor of a constant depth protected by surface-piercing thin breakwaters as a simplified problem. Our numerical study involves several modules: 1) wave dynamics analyzed by a plane-wave approximation, 2) suspended sediment transport combined with sediment erosion-deposition model, and 3) concurrent morphological changes. Scattering waves are solved by using a plane wave method without inclusion of evanescent modes. Evanescent modes are only considered in predicting the reflection ratio against the vertical barrier and energy losses due to vortex shedding from the lower edge of plate are taken into account. A new relationship to relate the near-bed concentration to the depth-mean concentration is presented by analyzing the vertical structure of concentration. The numerical solutions were also compared with experimental data on morphological changes within a rectangular harbor of constant water depth. Through the numerical experiments, the vortex-induced flow appears to be not ignorable in predicting the morphological changes although the immersion depth of a plate is not deep.

  • PDF

Evaluation of Partial Safety Factors on Sliding of Monolithic Vertical Caisson of Composite Breakwaters (혼성제 직립 케이슨의 활동에 대한 부분안전계수 산정)

  • Lee, Cheol-Eung;Park, Dong-Heon;Kwon, Hyuk-Jae;Lee, Sun-Yong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.4
    • /
    • pp.267-277
    • /
    • 2009
  • Partial safety factors of the load, resistance, and reliability function are evaluated according to the target probability of failure on sliding mode of monolithical vertical caisson of composite breakwaters. After reliability function is formulated for sliding failure mode of caisson of composite breakwaters regarding bias of wave force, uncertainties of random variables related to loads, strengths are analyzed. Reliability analysis for the various conditions of water depth, geometric, and wave conditions is performed using Level II AFDA model for the sliding failure. Furthermore, the reliability model is also applied to the real caisson of composite breakwaters of Daesan, Dong- hae, and Pohang harbor. By comparing the required width of caisson of composite breakwater according to target probability of failure with the other results, the partial safety factors evaluated in this study are calibrated straightforwardly. Even though showing a little difference on the 1% of target probability, it may be found that the present results agree well with the other results in every other target probability of failure.

Sliding Failure of Vertical Caisson of Composite Breakwater due to Occurrence of Extreme Waves Exceeded Design Conditions (고파랑 출현에 따른 혼성제 직립 케이슨의 활동파괴)

  • Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.219-230
    • /
    • 2002
  • The sliding stability of monolithic vertical caisson of composite breakwaters is quantitatively analyzed by using a reliability model, FMA of Level II, in order to study the variation of sliding failure of caisson due to the occurrence of extreme waves exceeded deepwater design wave. The reliability index and several parameters in the wave pressure formula are inter- related to find out the effects of extreme wave exceeded design wave on the sliding failure of vertical monolithic caisson. The sliding failure of caisson seems to be largely increased as the heights and periods of extreme waves exceeded design wave increase, also depends directly on the water depth in front of the composite breakwaters. From the numerical simulations carried out with several kinds of extreme waves exceeded design wave which are assumed to be occurred during the service periods of breakwater, it is found that the effects of the wave height on the sliding failure of caisson may be more dominant than those of wave periods and angles of wave incidence.

  • PDF

Responses of Submerged Double Hull Pontoon/Membrane Breakwater

  • Kee S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.19-28
    • /
    • 2005
  • The present paper outlines the numerical investigation of the incident wave interactions with fully submerged and floating dual double hull pontoon/vertical porous membrane breakwaters. Two dimensional five fluid-domains hydro-elastic formulation was carried out in the context of linear wave body interaction theory to study the wave interaction with the double hull of pontoon-membranes. The submerged circular pontoon is consisted of double hulls, which is filled with water in the void space between the outer structure and inner solid buoyant structure. Hydrodynamic characteristics of the proposed system with dual floating double-hull-pontoons filled with water have been studied numerically for the various incident waves. This study is a beginning stage research for the dual double hull porous pontoons/vertical porous membranes breakwaters which is ideally designed in order to suppress significantly the transmitted and reflected waves simultaneously.

Diffraction of water waves by an array of vertical barriers and heterogeneous bottom

  • Mondal, R.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.29 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • The interaction of head waves with an infinite row of identical, equally spaced, rectangular breakwaters is investigated in the presence of uneven bottom topography. Using linear water wave theory and matched eigenfunction expansion method, the boundary value problem is transformed into a system of linear algebraic equations which are numerically solved to know the velocity potentials completely. Utilizing this method, reflected and transmitted wave energy are computed for different physical parameters along with the wave field in the vicinity of breakwaters. It is observed that the wave field becomes more complicated when the incoming wavelength becomes smaller than the channel width. A critical ratio of the gap width to the channel width, corresponding to the inflection point of the transmitted energy variation, is identified for which 1/3 of the total energy is transmitted. Similarly, depending on the incident wavelength, there is a critical breakwater width for which a minimum energy is transmitted. Further, the accuracy of the computed results is verified by using the derived energy relation.

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF

Evaluation of Target Failure Level on Sliding Mode of Vertical Breakwaters using Safety Factors (안전율을 이용한 직립 방파제의 활동에 대한 목표파괴수준 산정)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can evaluate the target failure/safety levels on any failure modes of harbor structures as a function of central safety factor. Unlike the calibration method based on the average safety level of conventional design criteria, the target failure/safety level can be directly evaluated by only using central safety factors of the harbor structures which have been designed by safety factor method during the past several decade years. Several mathematical relationships are represented to straightforwardly connect the conventional safety factor design method with reliability-based design method. Even though limited data have been used in applying Monte-Carlo simulation method to sliding failure mode of the vertical breakwaters, it is found that target reliability indices evaluated by the suggested method in this paper is satisfactorily agreement with new criteria of reliability index of Japan.