DOI QR코드

DOI QR Code

Reliability Analysis of Maximum Overtopping Volume for Evaluating Freeboard of Vertical Breakwaters

직립식 방파제의 마루높이 산정을 위한 최대월파량에 대한 신뢰성 해석

  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University)
  • Received : 2011.02.19
  • Accepted : 2011.03.24
  • Published : 2011.04.29

Abstract

A reliability analysis model is developed for evaluating the crest freeboard of vertical breakwaters based on the concepts of maximum overtopping volume of individual wave. A reliability function is formulated by defining the margin of admissible overtopping volume and maximum overtopping volume that is depend on the number of overtopping waves, dimensionless crest freeboard, and mean overtopping discharge. In addition, Level III MCS technique is straightforwardly suggested by which the related empirical parameters to reliability function can be considered to be random variables with the wide range of different uncertainties. It can be possible to calculate the probabilities of failure according to the relative crest freeboard with the variations of the incident wave directions, the structural types of vertical breakwaters, and admissible overtopping volumes in conditions of the long and short crested-waves.

개별파 최대월파량 개념을 이용하여 직립식 방파제의 마루높이를 산정할 수 있는 신뢰성 해석 모형이 개발되었다. 입사파랑이 작용하는 시간 동안 월파되는 파랑의 개수와 상대마루높이 그리고 평균월파유량의 함수로 정의되는 개별파 최대월파량과 그 허용치를 이용하여 신뢰함수를 수립하였다. 상대적으로 다른 불확실성을 갖는 관련 경험계수들을 확률변수로 고려하여 신뢰성 해석을 수행할 수 있는 Level III MCS 기법을 제시하였다. 장봉파 및 단봉파 조건에서 입사파향, 직립식 방파제의 구조형식 그리고 개별파 최대월파량의 허용수준을 변화시키면서 상대 마루높이에 따른 파괴확률을 산정하였다.

Keywords

References

  1. 이철응 (2003). 월파에 대한 경사식 해안 구조물의 신뢰성 해석. 한국해안.해양공학회논문집, 15(4), 214-223.
  2. 오정은, 서경덕, 권혁민 (2006). 호안에서의 월파에 대한 신뢰성 해석. 한국해안.해양공학회논문집, 18(1), 69-83.
  3. Ahrens, J.P. and Heimbaugh, M.S.m. (1988). Seawall overtopping model. Proc. 21st. Int. Coast. Engrg. Conf., ASCE, 795-806.
  4. Allsop, N.W.H. (2005). Analysis of overtopping hazards. CLASH WP6, HR Wallingford, U.K.
  5. Allsop, N.W.H. and Besely, P.B. and Madurini, L. (1995). Overtopping performance of vertical and composite breakwaters, seawalls, and low reflection alternatives. Paper to Final MCS PW, Alderney, U.K.
  6. Allsop, N.W.H. and Franco, C. (1992). MAST G6-S Coastal Structures Topic R3: Performance of rubble moud breakwaters. Paper 3.12 to G6-S Final Workshop.
  7. Aminti, P. and Franco, L. (1988). Wave overtopping on rubble mound breakwaters. Proc. 21st. Int. Coast. Engrg. Conf., ASCE, 770-781.
  8. Besely, P.B. (1999). Overtopping of seawalls-design and assessment manual. Technical Report W178, Environmental Agency, Bristol, U.K.
  9. Beseley, P.B. and Allsop, N.W.H. (2000). Wave overtopping of coastal and shoreline structures. Handbook of Coast. Engrg., Herbich (ed.) 6.1-6.21.
  10. Bradbury, A.P. and Allsop, N.W.H. (1988). Hydraulic effects of breakwater crown walls. Design of Breakwaters ICE, London, 385-396.
  11. Bruce, T., Allsop, N.W.H. and Pearson, J. (2001). Violent overtopping of seawalls-extended prediction method. Proc. of Int. Conf. on Breakwaters, coastal structures and coastline, ICE, 245-255.
  12. CEM(Coastal Engineering Manual) (2006). Coastal Engineering Research Center, US Army Corps Engineers, Washington, DC.
  13. De Waal, J.P. and Van der Meer, J.W. (1992). Wave run-up and overtopping on coastal structures. Proc. 23rd. Int. Coast. Engrg. Conf., ASCE, 1759-1771.
  14. Franco, C. and Franco, L. (1999). Overtopping formulas for caisson breakwaters with nonbreaking 3D waves. J. of Waterway, Port, Coast., and Ocn. Engrg., ASCE, 125(2), 98-108.
  15. Franco, L., Gerloni, M. and Van der Meer, J.W. (1994). Wave overtopping on vertical and composite breakwaters. Proc. 24th. Int. Coast. Engrg. Conf., ASCE, 1030-1044.
  16. Hebsgaard, M., Sloth, P. and Juhl, J. (1998). Wave overtopping of rubble mound breakwaters. Proc. 26th. Int. Coast. Engrg. Conf., ASCE, 2235-2248.
  17. Hedges, T.S. and Reis, M.T. (1998). Random wave overtopping of simple sea walls: a new regression model. Water, Maritime and Energy Journal, ICE, 130, 1-10. https://doi.org/10.1680/iwtme.1998.30223
  18. Lee, C.E. and Kwon, H.J. (2009). Reliability analysis and evaluation of partial safety factors for random wave overtopping. KSCE Journal of Civil Engrg., KSCE, 13(1), 7-14. https://doi.org/10.1007/s12205-009-0007-x
  19. Li, C.Q. and Zhao, J.M. (2010). Time-dependent risk assessment of combined overtopping and structural failure for reinforced concrete structures. J. of Waterway, Port, Coast., and Ocn. Engrg., ASCE, 136(2), 97-103. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000031
  20. Owen, M.W. (1980). Design of seawalls allowing for wave overtopping. Rep. EX924, HR Wallingford, Wallingford, U.K.
  21. Pedersen, J. (1996). Experimental study of wave forces and wave overtopping on breakwater crown walls. Series paper 12, Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark.
  22. Pullen, T., Allsop, N.W.H., Bruse, T., Kortenhaus, A., Schuttrumpf, H. and Van der Meer, J.W. (2007). EurOtop-Wave overtopping of sea defences and related structures. Assessment manual. www.overtopping-manual.com, Die Kuste. Heft 73.
  23. Su, J.C., Liu, C.I. and Kuo, C.T. (1992). Application of Weibull distribution for irregular wave overtopping. Proc. of 6th IAHR Symp. on Stochastic Hyd., Taipei, Taiwan.
  24. TAW (2002). Technical report wave run-up and wave overtopping at dikes. Technical Advisory Committee on Flood Defence, Netherlands.
  25. Van der Meer, J.W. (1992). Wave run-up and overtopping at dikes. Report H638, Delft Hydraulics Ltd., Delft, Netherlands.
  26. Van der Meer. J.W. and Janssen, J.P.F.M. (1994). Wave runup and wave overtopping at dikes and revetments. Delft Hydraulic Pub. No. 485, Netherlands.
  27. Verhaeghe, H. (2005). Neural network prediction of wave overtopping at coastal structures. Ph.D. Thesis, University of Gent, Netherlands.