• 제목/요약/키워드: vertical bearing capacity

검색결과 224건 처리시간 0.03초

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가 (Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil)

  • 박정선
    • 한국해안·해양공학회논문집
    • /
    • 제33권5호
    • /
    • pp.195-202
    • /
    • 2021
  • 해상풍력발전기는 바람 및 파도, 구조물 자중에 의해 수직-수평-모멘트의 복합하중을 받는다. 본 연구에서는 유한요소해석으로 사질토 지반에 설치된 해상풍력발전기 석션기초의 복합하중에 대한 지지력을 산정하였다. 또한 복합하중이 작용하는 중의 석션기초 주변 지반의 응력상태를 상세하게 분석하였다. 최종적으로 유한요소해석 결과를 토대로 수평 및 모멘트 지지력 산정식과 복합하중에 대한 안전성을 평가하는 지지력 포락선 식을 제안하였다.

모형시험을 통한 복열 마이크로파일의 설치조건에 따른 수평 지지력 변화 (Variations of Lateral Bearing Capacity of 2-row Micropile with Installation Conditions by Model Test)

  • 황태현;김무연;이영생
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.35-49
    • /
    • 2020
  • 마이크로파일의 수평 지지력은 파일의 본 수, 설치 각도와 간격 등 설치조건에 좌우된다. 마이크로파일에 관한 기존 연구는 연직 지지특성에 대한 평가와 효과적인 설치방법의 제안 등에 국한되어 있고, 파괴 모드와 같은 파괴 메커니즘 등에 대한 연구는 거의 없는 실정이다. 또한 대부분의 수평 지지력에 관한 연구도 단열 마이크로파일(1-row micropile)에 관한 것이다. 이에 본 연구에서는 파일의 설치 길이, 각도, 간격 등 설치조건을 달리한 경우 복열 마이크로 파일(2-row micropile)의 거동 및 지지특성을 평가하기 위하여 모형시험을 수행하였다. 모형시험결과, 설치 각도 θ > 0°인 경우(비교차 설치)의 복열 마이크로파일의 수평 지지력은 파일의 간격에 좌우되며, 설치 각도 θ = +30°인 조건이 지지력 증대에 가장 효과적이었다. 또한 설치 각도 θ < 0°인 경우(교차 설치)에는 파일의 간격과 각도에 좌우되며, 설치 각도 θ = -15°인 조건이 지지력 증대에 가장 효과적인 것으로 나타났다.

Pile tip grouting diffusion height prediction considering unloading effect based on cavity reverse expansion model

  • Jiaqi Zhang;Chunfeng Zhao;Cheng Zhao;Yue Wu;Xin Gong
    • Geomechanics and Engineering
    • /
    • 제37권2호
    • /
    • pp.97-107
    • /
    • 2024
  • The accurate prediction of grouting upward diffusion height is crucial for estimating the bearing capacity of tip-grouted piles. Borehole construction during the installation of bored piles induces soil unloading, resulting in both radial stress loss in the surrounding soil and an impact on grouting fluid diffusion. In this study, a modified model is developed for predicting grout diffusion height. This model incorporates the classical rheological equation of power-law cement grout and the cavity reverse expansion model to account for different degrees of unloading. A series of single-pile tip grouting and static load tests are conducted with varying initial grouting pressures. The test results demonstrate a significant effect of vertical grout diffusion on improving pile lateral friction resistance and bearing capacity. Increasing the grouting pressure leads to an increase in the vertical height of the grout. A comparison between the predicted values using the proposed model and the actual measured results reveals a model error ranging from -12.3% to 8.0%. Parametric analysis shows that grout diffusion height increases with an increase in the degree of unloading, with a more pronounced effect observed at higher grouting pressures. Two case studies are presented to verify the applicability of the proposed model. Field measurements of grout diffusion height correspond to unloading ratios of 0.68 and 0.71, respectively, as predicted by the model. Neglecting the unloading effect would result in a conservative estimate.

철도교량용 고무패드의 특성 및 강성 추정기법 (The Characteristics and Estimated Stiffness of Rubber Pads for Railway Bridges)

  • 최은수;김현민;오지택;김성일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.115-122
    • /
    • 2005
  • This study analyzed the characteristics of four kinds of bridge rubber pads and suggested how to determine the stiffness the pads. The stiffness of rubber pads can be estimated by a direct static test. In the procedure to estimate the stiffness of a pad, the dead load(preload) of a bridge and live load of a vehicle are considered. The polyurethane rubber pads have larger hardness than natural and chloroprene rubber pads and thus carry larger load bearing capacity. In addition, they showed higher stiffness with the same shape factor than the others and thus are more avaliable as for bridge bearings. Although natural and chloroprene rubber pads are elongated to large deformation in horizontal direction due to vertical loads, polyurethane rubber pads almost do not generate horizontal deformation due to vertical loads regardless to the thickness and hardness of the pads. Therefore, they do not need reinforced plate to restrict horizontal deformation.

  • PDF

Full-scale tests and analytical model of the Teflon-based lead rubber isolation bearings

  • Wang, Lu;Oua, Jin;Liu, Weiqing;Wang, Shuguang
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.809-822
    • /
    • 2013
  • Base isolation is widely used in seismic resisting buildings due to its low construction cost, high reliability, mature theory and convenient usage. However, it is difficult to design the isolation layer in high-rise buildings using the available bearings because high-rise buildings are characterized with long period, low horizontal stiffness, and complex re-distribution of the internal forces under earthquake loads etc. In this paper, a simple and innovative isolation bearing, named Teflon-based lead rubber isolation bearing, is developed to address the mentioned problems. The Teflon-based lead rubber isolation bearing consists of friction material and lead rubber isolation bearing. Hence, it integrates advantages of friction bearings and lead rubber isolation bearings so that improves the stability of base isolation system. An experimental study was conducted to validate the effectiveness of this new bearing. The effects of vertical loading, displacement amplitude and loading frequency on the force-displacement relationship and energy dissipation capacity of the Teflon-based lead rubber isolation bearing were studied. An analytical model was also proposed to predict the force-displacement relationship of the new bearing. Comparison of analytical and experimental results showed that the analytical model can accurately predict the force-displacement relationship and elastic shear deflection of the Teflon-based lead rubber isolation bearings.

모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구 (Study of Smart Bi-directional Pile Load Test by Model Test)

  • 김낙경;김웅진;주용선;김성규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

Upgrading flexural performance of prefabricated sandwich panels under vertical loading

  • Kabir, M.Z.;Rezaifar, O.;Rahbar, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.277-295
    • /
    • 2007
  • 3-D wall panels are used in construction of exterior and interior bearing and non-load bearing walls and floors of building of all types of construction. Fast construction, thermal insulation, reduced labor expense and weight saving are the most well pronounced advantage of such precast system. When the structural performance is concerned, the main disadvantage of 3D panel, when used as floor slab, is their brittleness in flexure. The current study focuses on upgrading ductility and load carrying capacity of 3D slabs in two different ways; using additional tension reinforcement, and inserting a longitudinal concentrated beam. The research is carried on both experimentally and numerically. The structural performance in terms of load carrying capacity and flexural ductility are discussed in details. The obtained results could give better understanding and design consideration of such prefabricated system.

각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가 (Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes)

  • 김호수;홍석일;임영도
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.253-262
    • /
    • 2005
  • 본 논문에서 제시된 스터드-런너 골조형 벽체시스템은 일반구조용 각형강관(열간성형강)을 구조부재로 사용하여 벽체를 구성하고, 수평부재인 런너에 의해 보강되어 있기 때문에 스틸하우스와 비교하여 단위벽체의 내력성능 증가 및 좌굴에 대한 효율적 거동을 기대할 수 있으며, 또한 경량기포콘크리트를 충전함으로써 차음성능 및 단열의 효과를 기대할 수 있다. 이와 같은 시스템을 중 저층(3~5층)규모의 공동주택 및 사무실건물에까지 적용하기 위해, 런너의 설치간격과 경량기포콘크리트의 타설효과를 변수로 하여 실제규모의 단위벽체를 시험체로 제작하여 연직하중 및 수평하중에 대한 내력성능평가가 필요하다. 따라서, 본 논문에서는 경량기포콘크리트의 타설효과를 고려하여 연직하중에 대한 축내력성능평가와 수평하중에 대한 전단내력성능평가를 통해 스터드-런너 골조형 벽체시스템의 구조적성능을 분석하고자 한다.

Gravel Pile의 현장적용을 위한 시험시공 사례연구 (A Case Study on the Application of Gravel Pile in Soft Ground)

  • 천병식;고용일;여유현;김백영;최현석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 연약지반처리위원회 학술세미나
    • /
    • pp.32-41
    • /
    • 2000
  • Sand drain as a vertical drainage is widely used in soft ground improvement Recently, sand, the principal source of sand drain, is running out. The laboratory model tests were carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. Two cylindrical containers for the model test were filled with marine clayey soil from the west coast of Korea with a column in the center, one with sand, the other with gravel. Vibrating wire type piezometers were installed at the distance of 1.0D, 1.5D and 2.0D from the center of the column. The characteristics of consolidation were studied with data obtained from the measuring instrument place on the surface of the container. The parameter study was performed on the marine clayey soil before and after the test in order to verify the effectiveness of the improvement. The clogging effect was checked at various depth in gravel column after the test. In-situ tests area was divided into two areas by material used. One is Sand Drain(SD) and Sand Compaction Pile(SCP) area, the other is Gravel Drain(GD) and Gravel Compaction Pile(GCP) area. Both areas were monitored to obtain the information on settlement, pore water pressure and bearing capacity by measuring instruments for stage loading caused by embankment. The results of measurements were analyzed. According to the test results, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel pile explains the result. The clogging effect was not found in gravel column. It is assumed that gravel is relatively acceptable as a drainage material. Gravel is considered to be a better material than sand for bearing capacity, and it is found that bearing capacity is larger when gravel is used as a gravel compaction pile than as a gravel drain.

  • PDF