DOI QR코드

DOI QR Code

Axially-compressed behavior of CFRP strengthening steel short columns having defects

  • Omid Yousefi (Department of Civil Engineering, Nikshahr Branch, Islamic Azad University) ;
  • Amin Shabani Ammari (Faculty of Marine Engineering, Chabahar Maritime University)
  • Received : 2024.03.29
  • Accepted : 2024.06.23
  • Published : 2024.07.10

Abstract

In recent decades, the majority of studies have concentrated on the utilization of Steel Square Hollow Section (SHS) columns, with minimal attention given to reinforcing columns exhibiting inherent defects. This study addresses this gap by introducing initial vertical and horizontal defects at three distinct locations (top, middle, and bottom) and employing Carbon-FRP for reinforcement. The research investigates the dimensional and positional impacts of these defects on the axial behavior of SHS columns. A total of 29 samples, comprising 17 with defects, 11 strengthened, and 1 defect-free control, underwent examination. The study employed ABAQUS modeling and conducted experimental testing. Results revealed that defects located at different positions significantly diminished the load-bearing capacity and initial performance of the steel columns. Axial loading induced local buckling and lateral rupture, particularly at the defect side, in short columns. Notably, horizontal (across the column's width) and vertical (along the column's height) defects in the middle led to the most substantial reduction in strength and load-bearing capacity. The axial compressive failure increased with the length-to-width ratio of the defect. Moreover, the application of four carbon fiber layers to strengthen the steel columns resulted in increased Energy Dissipation and a delayed onset of local buckling in the face of axial ruptures.

Keywords

References

  1. Bambach, M.R. and Elchalakani, M. (2007), "Plastic mechanism analysis of steel SHS strengthened with CFRP under large axial deformation", Thin Wall. Struct., 45(2), 159-170. https://doi.org/10.1016/j.tws.2007.02.004.
  2. Dong, H., Jiangfeng, D., Qingyuan, W. and Xuelian, C. (2011). "Mechanical behaviour of recycled concrete filled steel tube conlumns strengthened by CFRP", 2011 International Conference on Multimedia Technology, July. https://doi.org/10.1109/ICMT.2011.6002838.
  3. Dong, J., Wang, Q. and Guan, Z. (2013), "Structural behaviour of recycled aggregate concrete filled steel tube columns strengthened by CFRP", Eng. Struct., 48, 532-542. https://doi.org/10.1016/j.engstruct.2012.11.006.
  4. Elkhabeery, O., Safar, S. and Mourad, S. (2018), "Flexural strength of steel I-beams reinforced with CFRP sheets at tension flange", J. Constr. Steel Res., 148, 572-588. https://doi.org/10.1016/j.jcsr.2018.05.038.
  5. Fayyadh, M. and Abed, M. (2022), "Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings", Struct. Eng. Mech., 84, 49-61. https://doi.org/10.12989/sem.2022.84.1.049.
  6. Ganapathy, G.P. and Sundarraja, M. (2013), "Behaviour of concrete filled steel tubular (CFST) short columns externally reinforced using CFRP strips composite", Constr. Build. Mater., 47, 1362-1371. https://doi.org/10.1016/j.conbuildmat.2013.06.038.
  7. Gao, X.Y., Balendra, T. and Koh, C.G. (2013), "Buckling strength of slender circular tubular steel braces strengthened by CFRP", Eng. Struct., 46, 547-556. https://doi.org/10.1016/j.engstruct.2012.08.010.
  8. Haedir, J. and Zhao, X.L. (2011), "Design of short CFRP-reinforced steel tubular columns", J. Constr. Steel Res., 67, 497-509. https://doi.org/10.1016/j.jcsr.2010.09.005.
  9. Hedayat, A.A. (2015), "Prediction of the force displacement capacity boundary of an unbuckled steel slit damper", J. Constr. Steel Res., 114, 30-50. https://doi.org/10.1016/j.jcsr.2015.07.003.
  10. Kalavagunta, S., Naganathan, S. and Mustapha, K.N.B. (2013), "Proposal for design rules of axially loaded CFRP strengthened cold formed lipped channel steel sections", Thin Wall. Struct., 72, 14-19.https://doi.org/10.1016/j.tws.2013.06.006.
  11. Karimian, M., Narmashiri, K., Shahraki, M. and Yousefi, O. (2017), "Structural behaviors of deficient steel CHS short columns strengthened using CFRP", J. Constr. Steel Res., 138, 555-564. https://doi.org/10.1016/j.jcsr.2017.07.021.
  12. Keykha Amir, H. (2021), "CFRP strengthening of steel beam curved in plan", Steel Compos. Struct., 41(5), 637-648. https://doi.org/10.12989/scs.2021.41.5.637.
  13. Li, G., Wang, J., Fang, C., Li, X. and Zhou, Y. (2023), "Performance of CFST members internally strengthened with I-shaped CFRP under impact load", J. Constr. Steel Res., 211, 108132. https://doi.org/10.1016/j.jcsr.2023.108316.
  14. Nabati, A. and Ghanbari-Ghazijahani, T. (2020), "CFRP-reinforced circular steel tubes with cutout under axial loading", J. Constr. Steel Res., 164, 105775. https://doi.org/10.1016/j.jcsr.2019.105775.
  15. S.J.S.I. SikaWrap® -230 C (2019), Product Data Sheet., India.
  16. Shaat, A. and Fam, A. (2006), "Axial loading tests on short and long hollow structural steel columns retrofitted using carbon fibre reinforced polymers", Can. J. Civil Eng., 33(4), 458-470. https://doi.org/10.1139/l05-042.
  17. Shaikh, F.U.A. and Alishahi, R. (2019), "Behaviour of CFRP wrapped RC square columns under eccentric compressive loading", Struct., 20, 309-323. https://doi.org/10.1016/j.istruc.2019.04.012.
  18. Subhani, M., Globa, A. and Moloney, J. (2020), "Timber-FRP composite beam subjected to negative bending", Struct. Eng. Mech., 73(3), 353-365. https://doi.org/10.12989/sem.2020.73.3.353.
  19. Tao, P.Z., Han, L.H. and Zhuang, J.P. (2007), "Axial loading behavior of CFRP strengthened concrete-filled steel tubular stub columns", Adv. Struct. Eng., 10, 37-46. https://doi.org/10.1260/136943307780150814.
  20. Yousefi, O. (2022), "Numerical investigation on structural behaviors of deficient steel CHS long columns strengthened using CFRP", AUT J. Civil Eng., 6(4), 509-520. https://doi.org/10.22060/AJCE.2023.22325.5825.