• Title/Summary/Keyword: vertex coloring

Search Result 27, Processing Time 0.024 seconds

On the Diameter, Girth and Coloring of the Strong Zero-Divisor Graph of Near-rings

  • Das, Prohelika
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.4
    • /
    • pp.1103-1113
    • /
    • 2016
  • In this paper, we study a directed simple graph ${\Gamma}_S(N)$ for a near-ring N, where the set $V^*(N)$ of vertices is the set of all left N-subsets of N with nonzero left annihilators and for any two distinct vertices $I,J{\in}V^*(N)$, I is adjacent to J if and only if IJ = 0. Here, we deal with the diameter, girth and coloring of the graph ${\Gamma}_S(N)$. Moreover, we prove a sufficient condition for occurrence of a regular element of the near-ring N in the left annihilator of some vertex in the strong zero-divisor graph ${\Gamma}_S(N)$.

A Procedure for Determining The Locating Chromatic Number of An Origami Graphs

  • Irawan, Agus;Asmiati, Asmiati;Utami, Bernadhita Herindri Samodra;Nuryaman, Aang;Muludi, Kurnia
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.31-34
    • /
    • 2022
  • The concept of locating chromatic number of graph is a development of the concept of vertex coloring and partition dimension of graph. The locating-chromatic number of G, denoted by χL(G) is the smallest number such that G has a locating k-coloring. In this paper we will discussed about the procedure for determine the locating chromatic number of Origami graph using Python Programming.

Three Color Algorithm for Two-Layer Printed Circuit Boards Layout with Minimum Via

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • The printed circuit board (PCB) can be used only 2 layers of front and back. Therefore, the wiring line segments are located in 2 layers without crossing each other. In this case, the line segment can be appear in both layers and this line segment is to resolve the crossing problem go through the via. The via minimization problem (VMP) has minimum number of via in layout design problem. The VMP is classified by NP-complete because of the polynomial time algorithm to solve the optimal solution has been unknown yet. This paper suggests polynomial time algorithm that can be solve the optimal solution of VMP. This algorithm transforms n-line segments into vertices, and p-crossing into edges of a graph. Then this graph is partitioned into 3-coloring sets of each vertex in each set independent each other. For 3-coloring sets $C_i$, (i=1,2,3), the $C_1$ is assigned to front F, $C_2$ is back B, and $C_3$ is B-F and connected with via. For the various experimental data, though this algorithm can be require O(np) polynomial time, we obtain the optimal solution for all of data.

EDGE PROPERTIES OF THE 4-VALENT MULTI 3-GON GRAPHS

  • Jeong, Dal-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.577-584
    • /
    • 2004
  • In a 4-valent multi 3-gon graph, every cut-through curve forms a simple closed circuit. Hence it is a weak arrangement of simple curves that is defined by Branko Grunbaum. In this paper, we study the edge properties of the 4-valent multi 3-gon graphs from the point of view of arrangement, and we show that they are 3 colorable.

Proof Algorithm of Erdös-Faber-Lovász Conjecture (Erdös-Faber-Lovász 추측 증명 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-276
    • /
    • 2015
  • This paper proves the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture of the vertex coloring problem, which is so far unresolved. The Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture states that "the union of k copies of k-cliques intersecting in at most one vertex pairwise is k-chromatic." i.e., x(G)=k. In a bid to prove this conjecture, this paper employs a method in which it determines the number of intersecting vertices and that of cliques that intersect at one vertex so as to count a vertex of the minimum degree ${\delta}(G)$ in the Minimum Independent Set (MIS) if both the numbers are even and to count a vertex of the maximum degree ${\Delta}(G)$ in otherwise. As a result of this algorithm, the number of MIS obtained is x(G)=k. When applied to $K_k$-clique sum intersecting graphs wherein $3{\leq}k{\leq}8$, the proposed method has proved to be successful in obtaining x(G)=k in all of them. To conclude, the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture implying that "the k-number of $K_k$-clique sum intersecting graph is k-chromatic" is proven.

RNA FOLDINGS AND STUCK KNOTS

  • Jose Ceniceros;Mohamed Elhamdadi;Josef Komissar;Hitakshi Lahrani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.223-245
    • /
    • 2024
  • We study RNA foldings and investigate their topology using a combination of knot theory and embedded rigid vertex graphs. Knot theory has been helpful in modeling biomolecules, but classical knots emphasize a biomolecule's entanglement while ignoring their intrachain interactions. We remedy this by using stuck knots and links, which provide a way to emphasize both their entanglement and intrachain interactions. We first give a generating set of the oriented stuck Reidemeister moves for oriented stuck links. We then introduce an algebraic structure to axiomatize the oriented stuck Reidemeister moves. Using this algebraic structure, we define a coloring counting invariant of stuck links and provide explicit computations of the invariant. Lastly, we compute the counting invariant for arc diagrams of RNA foldings through the use of stuck link diagrams.

Cluster and Polarity Analysis of Online Discussion Communities Using User Bipartite Graph Model (사용자 이분그래프모형을 이용한 온라인 커뮤니티 토론 네트워크의 군집성과 극성 분석)

  • Kim, Sung-Hwan;Tak, Haesung;Cho, Hwan-Gue
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.89-96
    • /
    • 2018
  • In online communities, a large number of participants can exchange their opinion using replies without time and space restrictions. While the online space provides quick and free communication, it also easily triggers unnecessary quarrels and conflicts. The network established on the discussion participants is an important cue to analyze the confrontation and predict serious disputes. In this paper, we present a quantitative measure for polarity observed on the discussion network built from reply exchanges in online communities. The proposed method uses the comment exchange information to establish the user interaction network graph, computes its maximum spanning tree, and then performs vertex coloring to assign two colors to each node in order to divide the discussion participants into two subsets. Using the proportion of the comment exchanges across the partitioned user subsets, we compute the polarity measure, and quantify how discussion participants are bipolarized. Using experimental results, we demonstrate the effectiveness of our method for detecting polarization and show participants of a specific discussion subject tend to be divided into two camps when they debate.