• Title/Summary/Keyword: verilog hdl

Search Result 417, Processing Time 0.032 seconds

Low-power Frequency Offset Synchronization for IEEE 802.11a Using CORDIC Algorithm (CORDIC을 이용한 IEEE 802.11a용 저전력 주파수 옵셋 동기화기)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.66-72
    • /
    • 2009
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

Design and Implementation of OFDM Frequency Offset Synchronization Block Using CORDIC (CORDIC을 이용한 OFDM 주파수 옵셋 동기부 설계 및 구현)

  • Jang, Young-Beom;Han, Jae-Woong;Hong, Dae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.118-125
    • /
    • 2008
  • In this paper, an efficient frequency offset synchronization structure for OFDM(Orthogonal Frequency Division Multiplexing) is proposed. Conventional CORDIC(Coordinate Rotation Digital Computer) algorithm for frequency offset synchronization utilizes two CORDIC hardware i.e., one is vector mode for phase estimation, the other is rotation mode for compensation. But proposed structure utilizes one CORDIC hardware and divider. Through simulation, it is shown that hardware implementation complexity is reduced compared with conventional structures. The Verilog-HDL coding and front-end chip implementation results for the proposed structure show 22.1% gate count reduction comparison with those of the conventional structure.

Frequency Relay for a Power System Using the Digital Phase Locked Loop (디지털 위상 고정 루프를 이용한 계전기용 주파수 측정 장치)

  • Yoon, Young-Seok;Choi, Il-Heung;Lee, Sang-Yoon;Hwang, Dong-Hwan;Lee, Sang-Jeong;Jang, Su-Hyeong;Lee, Byung-Jin;Park, Jang-Soo;Jeong, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.564-566
    • /
    • 2003
  • 전력 계통에서 안정한 전력을 공급하는 것은 매우 중요하다. 전력 계통의 오류는 전압 및 주파수를 감시함으로써 검출 가능하다. 본 논문에서는 디지털 위상 고정 루프를 이용한 전력 계통의 주파수 측정 장치를 제안하고 이를 구현한 결과를 제시하고자 한다. 제안한 주파수 측정 장치는 위상 고정 루프의 기본요소로 구성된다. 위상분별기는 배타적 논리연산을 통해 위상오차를 검출하고 위상의 앞섬 및 뒤짐의 검출이 가능하도록 설계하였으며, 전력 계통의 주파수 동특성을 고려해서 3차의 루프 필터를 설계하였다. DCO는 출력 주파수의 분해능을 고려하여 입력 신호를 정확하게 추정할 수 있도록 설계하였다. 제안한 주파수 측정 장치의 성능을 검증하기 위하여 모의실험을 통해 주파수 변동량의 측정 범위 및 정확도를 검토하였으며, FPGA와 CPU를 포함하는 하드웨어를 구현하였다. FPGA에는 Verilog HDL로 디지털 위상 고정 루프의 위상분별기와 DCO를 구현하였으며 루프필터는 소프트웨어로 구현하였다. 제안한 디지털 위상 고정 루프의 성능 검증을 위해 정밀한 함수 발생기의 출력을 인가한 후 출력 주파수를 측정한 결과 및 전력 계통에 대한 실험 결과를 제시하였다.

  • PDF

Bi-directional hybrid solar tracking system using FPGA (FPGA를 이용한 양방향 및 혼합식 태양 추적을 이용한 태양광발전 시스템)

  • Ahn, Jun-yeong;Jeon, Jun-young;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.450-453
    • /
    • 2017
  • In this abstract, the FPGA system using solar tracking is introduced. Solar tracking system combined with sensor tracking and solar altitude programming is utilized. The sensor tracking system consists of image sensor, light sensor, and the programs for sun altitude received by the computer. The sun altitude is received from the national weather database by wireless communication. The goal is to have maximum energy generation efficiency using bi-directional tracking and mixed tracking with FPGAs that are relatively inexpensive in terms of developing and programming the system.

  • PDF

Design and Implementation of RAID Controller using Serial ATA Interface (Serial ATA Interface를 통한 RAID Controller 보드의 설계 및 구현)

  • Lim, Seung-Ho;Lee, Ju-Pyung;Park, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.665-668
    • /
    • 2003
  • In this paper, we have designed and implemented the RAID controller board which connects to the host computer with serial ATA interface and connects to the disks with parallel ATA interface. Serial ATA interface is proposed to overcome the design limitation of parallel ATA while enabling the storage interface to scale with the slowing media rate demands for PC platforms. Serial ATA is to replace parallel ATA with the compatibility with existing operating systems and drivers, adding performance headroom for years to come. It Moreover, serial ATA provides even faster transfer rate of 150 Mbytes/s which is larger than that of current parallel ATA. The RAID controller board designed in this paper combines up to 4 disks with parallel ATA interface, and connects to PC host computer with serial ATA interface. We have implemented RAID controller using Verilog HDL language with FPGA chip. The RAID controller supports RAID level 0 and 1 functionality. Experimently, the average read/write performance of parallel ATA interface is about 30 Mbytes/s. Therefore, when 4 parallel disks is connected to the RAID controller board, we can get almost full throughput of serial ATA protocol using the RAID level 0 configuration with 4 disks.

  • PDF

Design of Driving methods of lower power consumption in Plasma AI(plasma adaptive intensifier) driving method (Plasma AI(plasma adaptive intensifier)구동의 전력 소모 개선을 위한 구동방식 설계)

  • Kim, Jun-Hyeong;O, Sun-Taek;Lee, Dong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.844-847
    • /
    • 2003
  • Display devices are becoming increasingly important as an interface between humans and machines in the growing information society. In display devices, PDP (Plasma Display Panel) has many advantages in that it has wide screen, wide viewing angle and is light weight, thin. In PDP driving method, if the brightness of input image is high, applying the fixed sustain pulse to the PDP panel will raise the PDP power consumption and may damages the PDP panel. To overcome these problems, the Plasma AI driving method was introduced by the Matshushita co. in Japan. The Plasma AI driving module calculates the peak value and average value of 1 frame image and adjusts the gradation and sustain pulses for 1 frame sustain. In this paper, the proposed PDP driving module is based on the Plasma AI driving module. The proposed driving module calculates peak value and average value, and the brightness distribution of 1 frame image. Using brightness distribution, the proposed driving module divides 1 frame input image into 15 image patterns. For each image pattern, minimum sustain pulses and sub-frames are used for the brightness of 1 frame image and the sustain weight for 64, 128, 192 gradation is proposed. Therefore, the sustain power consumption can be reduced.

  • PDF

IR Image Processing IP Design, Implementation and Verification For SoC Design

  • Yoon, Hee-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2018
  • In this paper, We studied the possibility of SoC(System On Chip) design using infrared image processing IP(Intellectual Property). And, we studied NUC(Non Uniformity Correction), BPR(Bad Pixel Recovery), and CEM(Contrast Enhancement) processing, the infrared image processing algorithm implemented by IP. We showed the logic and timing diagram implemented through the hardware block designed based on each algorithm. Each algorithm was coded as RTL(Register Transfer Level) using Verilog HDL(Hardware Description Language), ALTERA QUARTUS synthesis, and programed in FPGA(Field Programmable Gated Array). In addition, we have verified that the image data is processed at each algorithm without any problems by integrating the infrared image processing algorithm. Particularly, using the directly manufactured electronic board, Processor, SRAM, and FLASH are interconnected and tested and the verification result is presented so that the SoC type can be realized later. The infrared image processing IP proposed and verified in this study is expected to be of high value in the future SoC semiconductor fabrication. In addition, we have laid the basis for future application in the camera SoC industry.

The Hardware Design of Effective Sample Adaptive Offset for High Performance HEVC Decoder (고성능 HEVC 복호기를 위한 효과적인 Sample Adaptive Offset 하드웨어 설계)

  • Park, Seungyong;Lee, Dongweon;Ryoo, Kwangki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.645-648
    • /
    • 2012
  • 본 논문에서는 고성능 HEVC(High Efficiency Video Coding) 복호기 설계를 위한 효율적인 SAO(Sample Adaptive Offset)의 하드웨어 구조 설계에 대해 기술한다. SAO는 양자화 등의 손실 압축에 의해 발생하는 정보의 손실을 보상하는 기술이다. 하지만 HEVC의 최대 블록 크기인 $64{\times}64$ 단위를 화소 단위 연산을 수행하기 때문에 높은 연산시간 및 연산량이 요구된다. 따라서 본 논문에서 제안하는 SAO 하드웨어 구조는 $8{\times}8$ 단위를 처리하는 연산기로 구성하여 하드웨어 면적을 최소화하였고, 내부레지스터를 이용하여 $64{\times}64$ 블록 크기를 지원한다. 또한 기존 SAO의 top-down 블록분할 구조에서 down-top 블록분할 구조로 설계하여 연산시간 및 연산량을 최소화 하였다. 제안하는 하드웨어 구조는 Verilog HDL로 설계하였으며, TSMC 칩 공정 $0.18{\mu}m$ 셀 라이브러리로 합성한 결과 동작 주파수는 250MHz, 전체 게이트 수는 45.4k 이다.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

Design of Low Area Decimation Filters Using CIC Filters (CIC 필터를 이용한 저면적 데시메이션 필터 설계)

  • Kim, Sunhee;Oh, Jaeil;Hong, Dae-ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.71-76
    • /
    • 2021
  • Digital decimation filters are used in various digital signal processing systems using ADCs, including digital communication systems and sensor network systems. When the sampling rate of digital data is reduced, aliasing occurs. So, an anti-aliasing filter is necessary to suppress aliasing before down-sampling the data. Since the anti-aliasing filter has to have a sharp transition band between the passband and the stopband, the order of the filter is very high. However, as the order of the filter increases, the complexity and area of the filter increase, and more power is consumed. Therefore, in this paper, we propose two types of decimation filters, focusing on reducing the area of the hardware. In both cases, the complexity of the circuit is reduced by applying the required down-sampling rate in two times instead of at once. In addition, CIC decimation filters without a multiplier are used as the decimation filter of the first stage. The second stage is implemented using a CIC filter and a down sampler with an anti-aliasing filter, respectively. It is designed with Verilog-HDL and its function and implementation are validated using ModelSim and Quartus, respectively.