• Title/Summary/Keyword: ventricular assist pump

Search Result 44, Processing Time 0.029 seconds

Suction Detection in Left Ventricular Assist System: Data Fusion Approach

  • Park, Seongjin
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.368-375
    • /
    • 2003
  • Data fusion approach is investigated to avoid suction in the left ventricular assist system (LVAS) using a nonpulsatile pump. LVAS requires careful control of pump speed to support the heart while preventing suction in the left ventricle and providing proper cardiac output at adequate perfusion pressure to the body. Since the implanted sensors are usually unreliable for long-term use, a sensorless approach is adopted to detect suction. The pump model is developed to provide the load coefficient as a necessary signal to the data fusion system without the implanted sensors. The load coefficient of the pump mimics the pulsatility property of the actual pump flow and provides more comparable information than the pump flow after suction occurs. Four signals are generated from the load coefficient as inputs to the data fusion system for suction detection and a neural fuzzy method is implemented to construct the data fusion system. The data fusion approach has a good ability to classify suction status and it can also be used to design a controller for LVAS.

Development and Evaluation of a Novel Electro-mechanical Implantable Ventricular Assist System (전기-기계식 이식형 좌심실 보조 시스템의 개발 및 평가)

  • 조한상;김원곤;이원용;곽승민;김삼성;김재기;김준택;류문호;류은숙
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.349-358
    • /
    • 2001
  • A novel electro-mechanical implantable ventricular assist system is developed as a bridge to transplantation or recovery for patients with end-stage heart failure. The developed system is composed of an implanted blood pump, an external monitoring system which stores data, and a wearable system including a portable external driver and a portable power supply system. The blood pump is designed to be implanted into the left upper abdominal space and provides blood flow from the left ventricular apex to the aorta. The pulsatile blood flow is generated by a double cylindrical cam. There was mo excessive heat emission from the blood pump into the temperature-controlled chamber in the heat test and no stagnated flow within the blood sac by the observation in the flow visualization test. Animal experiments were performed using sheep and calves. The maximum assist flow rate reached 7.85L/min in the animal experiment. The evaluation results showed that the developed system was feasible for the implantable ventricular assist system. The long-term in vitro durability test and mid-term in vivo experiments are in progress and mow the modified next model is under development.

  • PDF

Non-Surgical Resolution of Inflow Cannula Obstruction of a Left Ventricular Assist Device: A Case Report

  • Lee, Yoonseo;Sung, Kiick;Kim, Wook Sung;Jeong, Dong Seop;Shinn, Sung Ho;Cho, Yang Hyun
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.543-546
    • /
    • 2021
  • A 55-year-old woman who had received an implantable left ventricular assist device 3 months earlier presented with dyspnea and a low-flow alarm of the device. Computed tomography and log-file analysis of the device system suggested inflow cannula obstruction. Since the patient had cardiogenic shock due to pump failure, venoarterial extracorporeal membrane oxygenation (ECMO) was initiated. With ECMO, surgical exchange of the pump was considered. However, the obstruction spontaneously resolved without surgical intervention. It turned out that an obstructive thrombus was washed out by rebooting the pump. Moreover, the thrombus was embolized in the patient's left subclavian artery. The patient underwent heart transplantation 4 months after the pump obstruction accident and continued to do well.

Postcardiotomy Mechanical Circulatory Support in Congenital Heart Diseases (소아개심술 후 시행한 순환보조장치의 임상적 고찰)

  • 권오춘;이영탁
    • Journal of Chest Surgery
    • /
    • v.33 no.5
    • /
    • pp.385-390
    • /
    • 2000
  • Background: To review the experience that used both ventricular assist device(VAD) and extracorporeal membrane oxygenation(ECMO) for children with congential heart disease requiring postcardiotomy mechanical circulatory support. Material and Method: Between March 1993 and May 1995, we applied mechanical assist device using centrifugal pump to the 16 patients who failed to be weaned from cardiopulmonary bypass(n=15) or had been in cardiogenic shock in intensive care unit(n=1). The diagnosis were all congenital heart diseases and the ages of patients ranged from 20 days to 10 years (mean age=2.5$\pm$3.5 years). Result: The methods of mechanical circulatory support were LVAD(n=13), BVAD (n=1), and ECMO(n=2). The mean assist times were 54.0$\pm$23.7 hours. Post-assist complications were in orders: bleeding, acute renal failure, ventricular failure, respiratory failure, infection, and neurologic complication. It was possible for 9 patients(56.3%) to be weaned from assist device and 5 patients(31.3%) were discharged from hospital. There was no statistical significant between hospital discharged group and undischarged group by age, body weight, cardiopulmonary bypass time, and assist time. Conclusion: The ventricular assist device is an effective modality in salvaging the patient who failed to be weaned from cardiopulmonary bypass, but multiple factors must be considered for improving the results of mechanical circulatory support ; such as patient selection, optimal time of starting the assist device, and prevention and management of the complications.

  • PDF

Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method (퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출)

  • Park, Seung-Kyu;Choi, Seong-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.500-506
    • /
    • 2012
  • A method to model left ventricular assist device (LVAD) and detect suction occurrence for safe LVAD operation is presented. An axial flow blood pump as a LVAD has been used to assist patient with heart problems. While an axial flow blood pump, a kind of a non-pulsatile pump, has relative advantages of small size and efficiency compared to pulsatile devices, it has a difficulty in determining a safe pump operating condition. It can show different pump operating statuses such as a normal status and a suction status whether suction occurs in left ventricle or not. A fuzzy subtractive clustering method is used to determine a model of the axial flow blood pump with this pump operating characteristic and the developed pump model can provide blood flow estimates before and after suction occurrence in left ventricle. Also, a fuzzy subtractive clustering method is utilized to develop a suction detection model which can identify whether suction occurs in left ventricle or not.

Clinical use of Centrifugal Biomedicus Pump (Centrifugal biomedicus pump의 임상 응용)

  • 강면식
    • Journal of Chest Surgery
    • /
    • v.25 no.12
    • /
    • pp.1550-1555
    • /
    • 1992
  • From June 1989 to July 1992, we used centrifugal Biomedicus pump[CBP] in 20 patients In 9 cases, CBP was used as ventricular assistance after heart surgery for those who could not be weaned off bypass even with intra-aortic balloon counter-pulsation and with maximal inotropic support In 8 patients, CBP was used as partial left heart bypass during repair of aortic aneurysms or congenital aortic anomalies. And in 3 patients, CBP was used as vena caval bypass during resection of renal cell carcinoma with tumor extension into the inferior vena cava. In 2 of 9 patients with ventricular assistance, they were weaned off the device successfully after 16 hours and 7 days respectively. But the patients died of intracranial hemorrhage and sepsis, 7 and 29 days after weaning from cardiac support, respectively. In all the patients who underwent aortic of vena caval surgery using CBP as shunt, there were no complications such as postoperative bleeding necessitating reoperation, renal failure or neurologic sequelae. In conclusion, the centrifugal type of ventricular assistance may be potentially life saving treatment modality in patients with severe postoperative low cardiac output syndrome. The CBP can be safely employed for resection of renal cell carcinoma with vena caval tumor extension and for repair of aortic aneurysms.

  • PDF

The Impact of Intrapericardial versus Intrapleural HeartMate 3 Pump Placement on Clinical Outcomes

  • Salna, Michael;Ning, Yuming;Kurlansky, Paul;Yuzefpolskaya, Melana;Colombo, Paolo C.;Naka, Yoshifumi;Takeda, Koji
    • Journal of Chest Surgery
    • /
    • v.55 no.3
    • /
    • pp.197-205
    • /
    • 2022
  • Background: The integrated design of the HeartMate 3 (Abbott Laboratories, Chicago, IL, USA) affords flexibility to place the pump within the pericardium or thoracic cavity. We sought to determine whether the presence of a left ventricular assist device (LVAD) in either location has a meaningful impact on overall patient outcomes. Methods: A retrospective cohort study was conducted of all 165 patients who received a HeartMate 3 LVAD via a median sternotomy from November 2014 to August 2019 at our center. Based on operative reports and imaging, patients were divided into intrapleural (n=81) and intrapericardial (n=84) cohorts. The primary outcome of interest was in-hospital mortality, while secondary outcomes included postoperative complications, cumulative readmission incidence, and 3-year survival. Results: There were no significant between-group differences in baseline demographics, risk factors, or preoperative hemodynamics. The overall in-hospital mortality rate was 6%, with no significant difference between the cohorts (9% vs. 4%, p=0.20). There were no significant differences in the postoperative rates of right ventricular failure, kidney failure requiring hemodialysis, stroke, tracheostomy, or arrhythmias. Over 3 years, despite similar mortality rates, intrapleural patients had significantly more readmissions (n=180 vs. n=117, p<0.01) with the most common reason being infection (n=68/165), predominantly unrelated to the device. Intrapleural patients had significantly more infection-related readmissions, predominantly driven by non-ventricular assist device-related infections (p=0.02), with 41% of these due to respiratory infections compared with 28% of intrapericardial patients. Conclusion: Compared with intrapericardial placement, insertion of an intrapleural HM3 may be associated with a higher incidence of readmission, especially due to respiratory infection.

Bridge to Transplantation with a Left Ventricular Assist Device

  • Jung, Jae-Jun;Sung, Ki-Ick;Jeong, Dong-Seop;Kim, Wook-Sung;Lee, Young-Tak;Park, Pyo-Won
    • Journal of Chest Surgery
    • /
    • v.45 no.2
    • /
    • pp.116-119
    • /
    • 2012
  • A 61-year-old female patient was diagnosed with dilated cardiomyopathy with severe left ventricle dysfunction. Two days after admission, continuous renal replacement therapy was performed due to oliguria and lactic acidosis. On the fifth day, an intra-aortic balloon pump was inserted due to low cardiac output syndrome. Beginning 4 days after admission, she was supported for 15 days thereafter with an extracorporeal left ventricular assist device (LVAD) because of heart failure with multi-organ failure. A heart transplant was performed while the patient was stabilized with the LVAD. She developed several complications after the surgery, such as cytomegalovirus pneumonia, pulmonary tuberculosis, wound dehiscence, and H1N1 infection. On postoperative day 19, she was discharged from the hospital with close follow-up and treatment for infection. She received follow-up care for 10 months without any immune rejection reaction.

In-vivo Evaluation of Pneumatic Ventricular Assist Device and Durability Improvement (공압식 심실보조장치의 in-vivo 평가 및 내구성 개선)

  • 이상훈;이광호;박성식;서필원;김삼현;강봉진
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2004
  • In this paper, we described 23 cases of animal experiment with our pneumatic ventricular assist device and new durability-improvement method. The blood pump consists of blood housing, and back plate made by the injection molding of isoplast, and the diaphragm fabricated by dipping of polyurethane solution onto the aluminum mold. Its volume was 75 $m\ell$ and in-vitro test showed that maximum output was 4.5 $\ell$/min at the 100 mmHg. The adult female sheep with weight of 50 + 10 kg were employed for tile in-vivo experiments and the mean blood flow was sustained at 3.0 1/min. 4 animals survived more than 15 days and the longest survival time was 28 days. In the prior 10 cases, the major causes of death were the tearing of diaphragm at the diaphragm to blood housing junction. By the new mesh and alumina ball milling methods, the durability was enhanced, and its qualitative and quantitative improvement was proved via the in-vivo and in-vitro methods. Animal experiments demonstrated that all the physiologic parameters a ere maintained within the permissible ranges and no thrombus formation was observed through the visual and blood test. The in-vivo experiments demonstrated our pneumatic ventricular assist device to he one month's bridge to transplantation device.

Wireless Magnetic Pump: Characteristics of Magnetic Impellers and Medical Application

  • Song, Moon Kyou;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.344-351
    • /
    • 2017
  • Wireless magnet pumps are used in medical applications and are particularly useful as artificial heart ventricular assist devices (VADs). To investigate wireless operation of magnetic pumps, we fabricated three types of magnetic impellers using bonded magnets by blending magnetic powders of SmFeN, NdFeB, and Sr-ferrite. We investigated the magnetic properties of the fabricated magnetic impellers, which are driven by the application of magnetic coupling with an external driving magnet or external coil system, without a driving motor, shaft, or mechanical bearings. The use of wireless magnetic pumps is therefore not complicated by critical issues of size, heat, and vibration, which are very important issues for blood pumps. The magnetic properties of the impellers, such as their rotational speed, driving torque and hydrodynamic performance, determine their wireless driving ranges. We conducted performance evaluations of the impeller's magnetic wireless manipulation, heat, and vibration. In addition, we carried out an animal test to confirm the suitability of the wireless magnetic pumps for use as biventricular assist devices (BiVADs).