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Suction Detection in Left Ventricular Assist System:
Data Fusion Approach

Seongjin Choi

Abstract: Data fusion approach is investigated to avoid suction in the left ventricular assist
system (LVAS) using a nonpulsatile pump. LVAS requires careful control of pump speed to
support the heart while preventing suction in the left ventricle and providing proper cardiac
output at adequate perfusion pressure to the body. Since the implanted sensors are usually
unreliable for long-term use, a sensorless approach is adopted to detect suction. The pump
model is developed to provide the load coefficient as a necessary signal to the data fusion
system without the implanted sensors. The load coefficient of the pump mimics the
pulsatility property of the actual pump flow and provides more comparable information than
the pump flow after suction occurs. Four signals are generated from the load coefficient as
mnputs to the data fusion system for suction detection and a neural fuzzy method is
implemented to construct the data fusion system. The data fusion approach has a good
ability to classify suction status and it can also be used to design a controller for LVAS.

Keywords: Data fusion system, left ventricular assist system, neural fuzzy system, suction

detection, load coefficient.

1. INTRODUCTION

The left ventricular assist system (LVAS), where a
blood pump is located between the left ventricle and
the aorta, has been developed and is currently used as
a bridge or a permanent treatment to patients whose

hearts have functional problems. I.VAS supports the

heart to provide cardiac output at a pressure level
appropriate to maintain adequate perfusion to the
patient’s body. LVAS using the nonpulsatile pump as
an axial flow blood pump under investigation has
advantages of small size, efficiency, and reliability
over pulsatile pumps [1]. The nonpulsatile pumps
require more careful pump speed control due to poor
sensitivity to the ventricular preload and high
sensitivity to the ventricular afterload. At high speeds,
suction may occur at the inlet side of the pumps.
Suction has a damaging effect on the myocardium,
blood, and lungs and should be avoided. At low pump
speeds, the pump does not provide proper cardiac
output at adequate perfusion pressure and the pump
speed must be increased to maximize pump flow
without suction in the left ventricle. It is important to
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obtain necessary information such as pressures and
flows of body to control the pump speed properly.
Since the implanted sensors are unreliable for long-
term use, sensorless approaches are investigated for
suction detection in the left ventricle and pump speed
control using available signals [2, 3].

Our goal is suction detection in the left ventricle
from available signals of the pump speed console
instead of invasive sensors measurements. A pump
model] is developed to provide the load coefficient of
the pump. The load coefficient will be used as a signal
to detect suction in the left ventricle without invasive
sensors. In many patients, the natural heart still
provides weak contractility during pump support, even
though the amount of blood flow by the heart is
insufficient to sustain the patient. This weak
contractility contributes to the pulsatility of the
hemodynamic signals as left ventricle pressure, pump
flow, and aorta pressure with an implanted blood
pump. The load coefficient of the blood pump
presents the varying pulsatile load conditions to the
pump and is also pulsatile.

While the load coefficient of the pump mimics the
pulsatility property of the pump flow (only available
with invasive sensors and unlikely available for long-
term pump operation), it is difficult to use pulsatility
information alone for suction detection. The reason is
that pulsatility decreases before suction occurrence
and increases after suction occurrence as the pump
speed increases. As a result, a specific value of
pulsatility can indicate both ‘before suction’ and ‘after
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suction’. The mean value of the load coefficient is
more distinct to indicate whether suction occurs and
should be used to detect suction in cooperation with
pulsatility information. These signal properties lead to
the utilization of the data fusion system that combines
available information (uncertain and incoherent
information) and extracts necessary data for a
particular purpose such as signal processing, image
processing, and fault detection problems [4-6]. A
recent data fusion approach to suction detection in
LVAS can be found in [7], where the authors
addressed the fact that the actual pump flow could be
used to improve the performance of the data fusion
system. '

Inputs to the data fusion system are generally a
combination of multiple sensor information. Since the
only immediate information without invasive sensors
is the fictitious load coefficient from the pump model,
the data fusion system under consideration in this
paper can be classified as a monosensor fusion system
[8]. To provide more information to the data fusion
system, several fictitious signals are generated from
the load coefficient of the pump. These secondary
signals are used as inputs to the data fusion system for
the purpose of suction detection in the left ventricle.
Candidate inputs to the data fusion system are
pulsatility, change in pulsatility, mean value, and
change in mean value of the load coefficient.

The data fusion system often uses fuzzy logic to
deal with the problem of signal uncertainty thanks to
an ability to handle uncertain signals [9,10]. The data
fusion system employing fuzzy logic requires a
careful choice of the membership function parameters
because the membership function parameters are an
important factor to performance of signal detection
[11]. To avoid difficulty in choosing the parameters of
the membership functions, a neural fuzzy technique is
adopted to develop the data fusion system for suction
detection. The parameters of the membership
functions are trained to adjust the membership
functions with a predefined training data [12]. Several
types of inputs are investigated for the data fusion
system and the results of suction detection are given
and discussed.

Section 2 presents the pump model to provide the
load coefficient. Also, the properties of the load
coefficient and measured pump flow are examined. In
Section 3, the data fusion system using the neural
fuzzy method is constructed and the results of the data
fusion system are presented. The conclusions are
provided in Section 4.

2. SIGNAL EXTRACTION FROM PUMP
MODEL

The nonpulsatile pump used in this paper is the
Nimbus/UoP axial flow blood pump developed by

Nimbus Inc. and the University of Pittsburgh. The
model for this particular pump has been previously
developed to estimate the pump flow and pressure
difference across the pump and it uses current, pump
speed, and pump flow as inputs to determine the
parameters of the pump model by the least-squares
method [13]. A similar approach has been adopted to
develop another pump model. The pump model is
given as follows:
dw 3 . 3

JE=EK l*Ba)+Lcofa) , (1)
where @ is the pump speed [rad/sec], i is the motor
current [A], J is an inertia coefficient of the rotor
[Kg~m2], K is a torque constant [N-m/A], B is a
coefficient of viscous friction [N-m-sec/rad], and
Lot is a load coefficient of the pump [N-m-sec3/rad3].
The model in (1) is a slight modification of the
previously developed model in [13], which includes a
product term of the flow and squared speed. The
pump load model is similar to the model suggested by
[14] and [15], where the load is modeled to be
proportional to the squared speed. In this particular
pump, the identification experiments show that the
load mode!l with cubic speed term is better than the
load model with the squared speed term in terms of
the least-squares method. The parameters of J, K, B,
and L. of (1) are determined by the least-squares
method. The off-line parameters of the pump model
represent the average value of the parameters. With
determined parameters J, K, and B, the load
coefficient can be expressed as

1 (Ja)(k)—a)(k—l)

LCO k =
£ (k) o)’ N

+Ba(k) - %Ki(k)]

where h is a sampling time interval.

Animal experimental data has been used to compare
the properties of the load coefficient to those of the
pump flow. With pump implanted as LVAS in animal,
the pump speed increased from minimum speed (837
rad/sec) to maximum speed (1570 rad/sec) for the first
140 sec and suction occurred around 80 sec. After 140
sec, the pump speed began to decrease to minimum
speed. The change of pump speed provides changes in
hemodynamic variables such as pump flow, left
ventricle pressure, aorta pressure, and motor current to
operate the pump.

The resulting pump flow and the load coefficient of
the pump due to the change in pump speed are shown
in Fig. 1(a) and Fig. 1(b). Both the pump flow and the
load coefficient of the pump have pulsatility
properties. To represent the amplitude of the
pulsatility of the signal, the pulsatility index is
introduced and extracted from the pulsatile signal
using a simple extraction algorithm described in [3].
For example, the pulsatility index of the load
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coefficient L., can be obtained as

PLeot (k) = Gy (abs(Gy (Leos (KD))

where G) and Gy, are low-pass and high-pass filters
with cutoff frequencies of 0.25 Hz and 0.75 Hz,
respectively, for extracting pulsatility of the load
coefficient and PL.s represents the pulsatility index
of the load coefficient. Note that the pulsatility index
of the signal has the same unit as the input signal and
the unit of pulsatility index of the signal will not be
explicitly indicated.

Fig. 1 also shows the tendency of the pump flow
and the load coefficient to experience the occurrence
of suction in the left ventricle. While suction occurs at
80 sec, the pump flow shows diminishing pulsatility
before suction occurrence and increasing pulsatility
after suction occurrence. The load coefficient also
shows diminishing pulsatility before suction
occurrence and increasing pulsatility after suction
occurrence as the pump speed increases. The mean
value of the pump flow decreases after suction
occurrence (at 80 sec), maintains steady during
complete suction period, but still decreases without
recovering to normal values after the pump operating
status returns to normal status (at 200 sec). Contrary
to alternations of the mean value of the pump flow
before and after suction occurrence, the mean value of
the load coefficient continuously decreases after
suction occurrence, maintains steady during complete
suction period, and increases as expected with time

delays after returning to normal pump operation status.
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That is, induction of suction in the left ventricle
causes a drop in the mean value of the load coefficient.
The change in mean value of the load coefficient can
be used as an indication to suction detection. Signal
property comparisons suggest that the load coefficient
is a more desirable choice than the pump flow for
suction detection due to the distinct change in mean
value after suction occurrence.

3. DATA FUSION SYSTEM USING
NEURAL FUZZY METHOD FOR SUCTION
DETECTION

The data fusion system approach utilizes several
signals as inputs to achieve the goal of system
performance. The goal of the data fusion system under
consideration is suction detection to avoid harmful
effects to the patient with an implanted blood pump.
The selected information as inputs to the data fusion
system are mean pulsatility index, change in mean
pulsatility index, mean value, and change in mean
value of the load coefficient. Since the pulsatility of
the load coefficient of the pump decreases to a
minimum before suction occurrence and increases
after suction occurrence with an increase in the pump
speed, the pulsatility information is the most notable
information for suction detection in the left ventricle.
The mean value of the load coefficient is also
significant information to indicate the suction
occurrence as pointed out in Section 2. Signals such as
changes in pulsatility and mean value of the load
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Fig. 1. (a) Pump flow (left), pulsatility index of the pump flow (center), and mean value of the pump flow (right),
(b) load coefficient (left), pulsatility index of the lod coefficient (center), and mean value of the load coefficient (right).
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coefficient are also worthy to be investigated as inputs
to the data fusion system.

The overall structure of the data fusion system for
suction detection is given in Fig. 2(a). For the data
fusion system employing the neural fuzzy method for
suction detection, the input signals can be calculated
from the following equations:

1 (J (k) — axk —1)

L.sk)=
cof ( ) a)(k)3 h
PLcof (k) = Gl(abS(Gh (Lcof (k)))) ,

+Bw<k)—%Ki<k)),

L1 &
MPL . ()== D> PLg(k)
Iy lGi-Dn ’

. 1 ni
MLcof )=— Z Lcof (k)
Ny —i4(-Dn ’

CMPL¢ (i) = MPLof (i) = MPLop (i=1)

CMLof () =MLcop () =ML (=1

where G, and G, are low-pass and high-pass filters
with cutoff frequencies of 0.25 Hz and 0.75 Hz,
respectively, for extraction of the pulsatility index of
the load coefficient. While L s and PL.s represent the
instantaneous load coefficient and pulsatility index of
load coefficient, ML s, MPL.ot, CML.cf, and CMPL..¢
represent the mean value of the load coefficient, mean
pulsatility index of the load coefficient, change in
mean value of the load coefficient, and change in
mean pulsatility index of the load coefficient,
respectively, over a specific period. Since the mean
values of the signals are used as inputs to the data
fusion system in Fig. 2, a time interval necessary to
calculate the mean values of the signal is one of the
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important factors in evaluating the performance of the
data fusion system.

Output of the data fusion system is suction status.
While it is possible to use Boolean type classification,
it is convenient to classify output as ‘suction’,
‘imminent suction’, and ‘before suction’. The
linguistic label can be related to a fuzzy logic scheme.
Using fuzzy logic terminology, inputs can also be
translated as ‘low’ and ‘high’. The membership
functions and rules for the data fusion system should
be chosen to detect suction phenomenon. The design
of membership functions for the fuzzy logic system
requires a careful and tedious work to provide good
performance. A neural fuzzy method, which can avoid
difficulty in designing the membership functions, is
introduced to construct the data fusion system [10].
The structure of the neural fuzzy system is shown in
Fig. 2(b). The number of rules of the data fusion
system is 16 and the total nodes of the data fusion
system are 57 (8+16+16+16+1) for a four-input
system.

The time interval for processing signals is selected
so as to allow a reasonable detection time. A longer
time interval can provide more distinguishable signal
properties but it results in lengthy suction detection
time and eventually harmful effect on the patient due
to exposure to a long period of high pump speed. Also.
it reduces the number of the training data selected
from the limited experimental data. Considering
detection time and the number of the training data, 1
second is chosen as the time interval to calculate the
mean values of the signals, which serve as inputs to
the data fusion system for suction detection.

While inputs are calculated from the instantaneous
load coefficient, output is determined by visual
inspection of the experimental data correspondence to
time sequence of the inputs. Each input signal can
represent values of ‘high’ and ‘low’ in membership
functions and output of the data fusion system is
represented by values of 0, 0.5, and 1.0 corresponding

fi= ia)x/ +a;
s

= 16 1o
fu=Sa, +al
ol

(®)

Fig. 2. (a) Overall data fusion system structure, (b) neural fuzzy system.
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to ‘before suction’, ‘imminent suction’, and ‘suction’,
respectively. Fig. 3 shows the profiles of signals used
for the data fusion system. Low pass filters are used to
smooth the signal for inputs to the data fusion system.

The membership functions for each input signal are
initially given and the membership functions are
trained to fit into a given training data [10]. The
training data consists of the inputs-output pairs from
the animal experimental data. The training data is
selected to have a 50% portion of the total available
data. The rest of the data is used for the purpose of
evaluation. The total available data is evenly divided
into the training data and the test data. While the
training data consists of inputs-output pairs at time
step k, the test data consists of the inputs-output pairs
at time step k+1.

To investigate the effect of the number and types of
inputs to the data fusion system, several combinations
of inputs have been used. First, mean pulsatility index
and change in mean pulsatility index of the load
coefficient were selected as inputs to the data fusion
system. The data fusion system employing the neural
fuzzy system has been trained and evaluated. The
results are shown in Fig. 4(a). Secondly, the data
fusion system, which used mean value and change in
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mean value of the load coefficient as inputs, has also
been trained and evaluated. The suction detection
results of the data fusion system with these inputs are
shown in Fig. 4(b). Thirdly, mean pulsatility index
and mean value of the load coefficients have been
used as inputs to the data fusion system. The neural
fuzzy system has been trained to construct the data
fusion system. The results are shown in Fig. 4(c).
Suction detection performances in Figs. 4(a) — 4(c) are
not good enough to classify suction status in the left
ventricle. Finally, mean pulsatility index, change in
mean pulsatility index, mean value, and change in
mean value of the load coefficient have been used as
inputs to the data fusion system. Fig. 4(d) shows the
evaluation results of the data fusion system with four
inputs. It does apparently improve performance
compared to the results in Figs. 4(a) — 4(c) and it
demonstrates good performance of classifying suction
status during the transient period from ‘before suction’
and ‘suction’ due to input signals such as CMPL,
and CML..

Another factor considered in the data fusion
system is output values of the inputs-output pairs
necessary for training the data fusion system.
Previously, outputs of the training data were classified
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Fig. 3. Signals used for data fusion system. All signals are expressed as a unit of the load coefficient. (a)
Pulsatility index of the load coefficient and filtered pulsatility index of the load coefficient, (b) change in
pulsatility index of the load coefficient and filtered change in pulsatility index of the load coefficient, (c)
load coefficient signal and filtered load coefficient signal, (d) change in the load coefficient and filtered

change in the load coefficient.



International Journal of Control, Automation, and Systems Vol. 1, No. 3, September 2003 373

Suction detection status

02 % R, [P |
20 40 60 80 100 120 140 160 180 200 220 240
Time[sec]

(a)

Sugction detection status

n R

02t U U P
20 40 60 80 100 120 140 160 180 200 220 240
Time[sec)

©

Suction detection status

Q
2L & S P,
20 40 60 80 100 120 140 160 180 200 220 240
Time(sec]

(b)

Suction detection status

e o PSPV P |
80 100 120 140 160 180 200 220 240
Time[sec)]

(@

Fig. 4. Suction detection results. ‘x’ indicates the predicted suction status with evaluation data while ‘o’ indicates
the expected suction status with training data. (a) Inputs: mean pulsatility index and change in mean
pulsatility index of the load coefficient, (b) inputs: mean value and change in mean value of the load
coefficient, (c) inputs: mean pulsatility index and mean value of the load coefficient, (d) inputs: mean
pulsatility index, change in mean pulsatility index, mean value, and change in mean value of the load

coefficient.

into three categories, ‘before suction’, ‘imminent
suction’, and ‘suction’, represented by 0, 0.5, and 1.0,
respectively. It may be helpful to describe ‘imminent
suction’ more precisely to represent the intensity of
imminent suction with values from 0 to 1. Identical
procedures have been repeated to obtain inputs-output
pairs of the training data and to train the data fusion
system. The evaluation results are shown in Fig. 5.
The four-input data fusion system can predict the
transient suction status more precisely. It can be
explained that changes in mean pulsatility and mean
value of the load coefficient effectively capture the
intensity of the imminent suction in the transient
situation from ‘before suction’ to ‘suction’. A simple
modification of outputs of the training data can
improve performance of the data fusion system.
Overall, the data fusion system with four inputs shows
good performance for suction detection and can be
used to classify signals for this particular suction
detection problem.

4. CONCLUSION

A data fusion system for suction detection has
been developed without invasive sensors. The load
coefficient is extracted from the pump model as an
indicative signal to suction detection. Mean pulsatility
index, change in mean pulsatility index, mean value,
and change in mean value of the load coefficient have
been chosen as inputs to the data fusion system. The
data fusion system employing the neural fuzzy method
has been trained with the inputs-output pairs from a
portion of the animal experimental data. The trained
data fusion system can predict suction status well and
it can classify ‘imminent suction’ at several levels.
The evaluation results are encouraging and the data
fusion system can be incorporated with a controller
for LVAS. Since the results depend on the limited
number of the training data, an increase of the number
of the training data can provide more diverse and
realistic situations to the data fusion system and
improve the performance of the data fusion system for
suction detection in the left ventricle.
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Fig. 5. Suction detection results. ‘x’ indicates the predicted suction status with evaluation data while ‘o’ indicates
the expected suction status with training data. (a) Inputs: mean pulsatility index and change in mean
pulsatility index of the load coefficient, (b) inputs: mean value and change in mean value of the load
coefficient, (c) inputs: mean pulsatility index and mean value of the load coefficient, (d) inputs: mean
pulsatility index, change in mean pulsatility index, mean value, and change in mean value of the load

coefficient.
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