• Title/Summary/Keyword: ventilation house

Search Result 302, Processing Time 0.027 seconds

An Analysis on Usability of Oriental Melon Production Technology for Back-from-City Farmers (귀농인 참외재배 교육시스템 마련을 위한 생산기술 활용도 분석)

  • Choi, Don-Woo;Jang, Won-Cheol;Kim, Dong-Chun;Kim, Tae-Kyun
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.45-54
    • /
    • 2014
  • The main purpose of this study is to provide the back-from-city farmers with the information about the melon cultivation technology by surveying 268 farm houses in the major melon producing districts such as Seongju and Chilgok. For the purpose, this study classifies the essential technologies that the melon experts think as most important into 6 categories: size of plastic film house, covering film, varieties of oriental melon, lagging cover, ventilation method and ways to reduce repeated-cultivation damage. The result of the study shows that the back-from-city farmers should consider the following items when they choose to cultivate oriental melons. For the size of plastic film house, the ventilation method and the covering film of plastic film house, it is better to choose the latest technology. Even though it may require larger initial investment, the latest technology can increase the production and lower the cost. In case of variety, it is better to choose popular or the most widely grown ones rather than the new ones. The lagging cover should be selected in consideration of climate conditions such as average temperature and humidity, transplant time and harvest time of the farming region.

A Study on the Mechanical Ventilation Design that Consider Supply and Exhaust Efficiency of the Apartment House Kitchen (공동주택 주방의 급ㆍ배기효율을 고려한 기계환기 설계에 관한 연구)

  • 함진식
    • Journal of the Korean housing association
    • /
    • v.15 no.3
    • /
    • pp.101-108
    • /
    • 2004
  • To find more efficient exhaust effect, air curtain of upward or downward trend in gas table and left or right side of range hood were made. As result that film vapor from range hood lower part by digital camera, the air current change by moving existence and nonexistence of exhaust fan and direction of air curtain were known. Under all experiment condition, upward air curtain superior exhaust performance.

Residence s Exposure to Nitrogen Dioxide and Indoor Air Characteristics (거주지역 실내공기 특성 및 이산화질소 노출에 관한 연구)

  • 양원호;배현주;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.183-192
    • /
    • 2002
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level and so on. Although technologies exist to measure these factors directly, direct measurements of all factors are impractical in most field studies. The purpose of this study was to develop an alternative methods to estimate these factors by multiple measurements. Daily indoor and outdoor NO$_2$concentrations for 21 days in 20 houses in summer and winter, Seoul. Using a mass balance model and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor(emission rate divided by sum of air exchange rate and deposition constant) were calculated. Subsequently, the ventilation and source strength were estimated. During sampling period, geometric mean of natural ventilation was estimated to be 1.10$\pm$1.53 ACH, assuming a residential NO$_2$decay rate of 0.8 hr$^{-1}$ in summer. In winter, natural ventilation was 0.75$\pm$1.31 ACH. And mean source strengths in summer and winter were 14.8ppb/hr and 22.4ppb/hr, respectively. Although the method showed similar finding previous studies, the study did not measure ACH or the source strength of the house directly. As validation of natural ventilations, infiltrations were measured with $CO_2$tracer gas in 18 houses. Relationship between ventilation and infiltration was statistically correlated (Pearson r=0.63, p=0.02).

Concentrations of Particulate Matter Exposed to Farm Workers in the Broiler Houses (육계사 내 작업자의 미세먼지 노출량 현장모니터링)

  • Seo, Hyo-Jae;Oh, Byung-Wook;Kim, Hyo-Cher;Sin, So-Jung;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.27-37
    • /
    • 2020
  • As domestic meat consumption increases, the broiler production industry has been larger and denser. The concentration of particulate matter (PM) and harmful gases generated is also increasing inside livestock house. However, the current research status of PM exposed to farm workers and the health effects are in the early stage. To understand PM concentration affecting workers in the broiler house, field monitoring was conducted according to its size distributions. Concentrations of PM10, PM2.5, and TD (Total Dust) were monitored using personal air samplers with teflon filter during working and moving periods considering the ventilation systems of 6 broiler houses. The purpose of this study is to monitor the PM concentration in the experimental broiler houses operated by forced ventilation system generally used in Korea and to evaluate the regional concentrations through airflow pattern. The PM concentrations were increased from inlet to outlet vents resulting in 1,872 of TD, 1,385 of PM10, and 209 ㎍/㎥ of PM2.5, respectively. The TD and PM10 concentrations were increased when the workers and broilers were moving. Among them, the particle size that occupied the largest amount of PM was 13.75 ㎛. These results suggest that personal protection equipments are important to reduce the health effect from PM inhalation.

Heating and Cooling Energy Demand Analysis of Standard Rural House Models (농어촌 주택 표준모델의 냉난방에너지요구량 분석)

  • Lee, Chan-Kyu;Kim, Woo-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3307-3314
    • /
    • 2012
  • The annual energy demand of the standard rural house models was analyzed using the DesignBuilder. Indoor temperature set-point, U-value of outer wall, type of window, and degree of ventilation were selected as simulation parameters. In all the simulation cases, heating energy demand was higher than cooling energy demand regardless of the building size. When the lower U-value of the outer wall was applied to account for the thicker insulation layer, heating energy demand was decreased while cooling energy demand was increased. However, it is better to reduce the area of outer wall which is directly exposed to outdoor air because reducing the U-value of the outer wall is not effective in decreasing heating energy demand. Among the four different window types, the double skin window is most favorable because heating energy demand is the lowest. For a fixed infiltration rate, higher ventilation rate resulted in an increased heating energy demand and had minor impact on cooling energy demand. As long as the indoor air quality is acceptable, lower ventilation rate is favorable to reduce the annual energy demand.

The Effect of Wet Pad and Forced Ventilation House on the Reproductive Performance of Boar

  • Chiang, S.H.;Hsia, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.96-101
    • /
    • 2005
  • There were two trials involved in the experiment. Trial 1: the trial was conducted on two Taiwan Sugar Corporation (TSC) pig farms. One was located in the north of Taiwan and the other was located in the south. Both farms had wet pad and forced ventilation (WPFV) and conventional open design (COD) boar and sow houses. There were 12 Duroc boars, age ranging from 12-24 months. Half of them (6 boars) were raised in a WPFV pig house, and the other half were kept in a COD house. Semen was collected at 5-day intervals from May $1^{st}$ to the end of October. Sixteen sows (2-8 parity) were served by artificial insemination each week from the beginning of May to the end of Oct. These sows were checked for heat from 18 days to 25 days after insemination. Trial 2: there were four MPFV boar houses involved in the test. Two houses were located in the north of Taiwan, and the other two houses were located in the south. The test was conducted from January 2000 to December 2001. The total number of serviced sows by MPFV-housed boars was 35,105 head and for COD-housed boars 103,065 head. The results showed that the total semen volume, density of sperm, total sperm per ejaculate, sperm motility and morphological abnormality were significantly better (p<0.01) for boar raised in WPFV house than for COD houses. Average sperm motility in June and July was lower than for the other months. Morphological abnormality was higher during May, June and July. Although the results did not reach a significant level, the average value showed that the total volume of boar semen was higher in the north than for the south. The total semen volume production of boar raised in WPFV was higher than for boars raised in COD house, reaching a significant level only in summer. Boars kept in WPFV house had higher total sperm number than boars kept in COD house, reaching a significant level in spring (p<0.05), summer (p<0.01), and fall (p<0.05) but not in winter (p>0.05). Boars raised in WPFV house had significantly higher sperm motility than boars in COD house during spring (p<0.001), summer (p<0.001), fall (p<0.01) and winter (p<0.05). The average farrowing rate and piglets born alive were higher for boars in WPFV house than for boars in COD house, but neither reached a significant level (p>0.05). The present experiment shows that WPFV house can improve the reproduction performance of boars.

Environmental Efficiency Analysis of an Enclosed Experimental Broiler House (실험 무창육계사의 환경효율 분석)

  • Hwangbo, J.;Song, J.I.;Cho, S.B.;Chung, K.H.;Lee, B.S.;Nam, B.S.;Chung, C.S.;Chung, I.B.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.475-482
    • /
    • 2002
  • The experiment was conducted to evaluate a ventilation system, which was devised to encourage farmers to use the enclosed poultry housing system. The study was observed in the National Livestock Research Institute from May 9 to May 30 in 2002. The main results of the experiment are as follows: 1. Although the outside temperature of the enclosed poultry house was 9.6 ${\sim}$ 21.2$^{\circ}C$ with 11.6$^{\circ}C$ variation, the house with an excellent heat insulation was maintained at 32${\sim}$33$^{\circ}C$ in a variation of 2$^{\circ}C$ which is within the range of the optimal temperature for broiler, being aided with two small electric heaters. 2. The average of air flow rates of the upper, middle and low parts of the room in the broiler house were detected at 0.57, 0.22 and 0.04 m/sec, respectively. The air flow in the whole room was distibuted uniformly by a perforated duct. In conclusion, heat and humidity could be controlled without any problem in this enclosed housing system. Especially, air flow in all parts of the room was detected in uniform rates, resulting in the better ventilation performance with air inhalation through the duct and air exhaust through the side walls of the house.

Control Effect of Temperature and Humidity by Ventilation Fan Operation Methods in Wintering Honey Bee House (월동용 양봉사의 환기팬 작동방식에 따른 온 ${\cdot}$ 습도 조절효과)

  • Lee, Jong-Won;Lee, Hyun-Woo;Lee, Suk-Gun;Jin, Ran-Shu;Choi, Kwang-Soo
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.127-131
    • /
    • 2003
  • This study was conducted to establish the ventilation fan operation schedule to be able to provide satisfactory environment for colonies in thc wintering honey bee house. The simulation and practical measuring test were conducted to verify the applicability of an existing simulation program to thc calculation of inside thermal environment condition of the house, and the environment control performance was compared between the two types of fan operation schedule to find the proper schedule. It was concluded that the program could be used to design thc materials of the enclosure and the fan operation schedule and decide the number of accommodation hives. Inside temperature of bee house controlled by the fan operation schedule B was lower than the schedule A under the similar high outside temperature condition. In the presence of the high outside temperature condition, inside air temperature of bee house could be decreased by changing fan operation schedule A to schedule B. The humidity variation in bee house controlled by the tan operation of schedule B was smaller than that by schedule A. These results indicated that the schedule B was superior in the aspect of the environment control performance.

Internal Thermal Environment Uniformity Analysis of Mechanically Ventilated Broiler House (강제 환기식 육계사 내부 열환경 균일성 평가)

  • Kim, Da-in;Lee, In-bok;Lee, Sang-yeon;Park, Sejun;Kim, Jun-gyu;Cho, Jeong-hwa;Jeong, Hyo-hyeog;Kang, Sol-moe;Jeong, Deuk-young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Livestock industry in Korea has been growing rapidly and has reached 23 trillion Korean won in 2021. This study focuses on broiler, which is one of the largest sectors in livestock industry. As the effects of climate change get more serious, primary industry such as livestock industry is fragile to climate change since it directly interacts with nature. Therefore, maintaining suitable rearing environment is important. One of the most frequently used ventilation type for controlling the rearing environment of broiler house, tunnel ventilation, causes frequent air velocity fluctuation which makes maintaining the rearing environment important. By measuring the air temperature, relative humidity and air velocity in various points inside the broiler house, the internal thermal environment uniformity was analyzed according to length, width and zone. The experimental house was found to have dead zone with high air temperature, relative humidity and low air velocity near the end of the inlet and at the end of the broiler house. By using heat stress index to analyze quantitatively, zone with highest heat stress index was found to increase by 7.55% compared to the lowest zone. As a result, to maintain uniform rearing environment inside the broiler house, different factors must be measured and analyzed and used to operate the environmental control facilities.