• Title/Summary/Keyword: velocity saturation effect

Search Result 50, Processing Time 0.028 seconds

A Unified Channel Thermal Noise Model for Short Channel MOS Transistors

  • Yu, Sang Dae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.213-223
    • /
    • 2013
  • A unified channel thermal noise model valid in all operation regions is presented for short channel MOS transistors. It is based on smooth interpolation between weak and strong inversion models and consistent physical model including velocity saturation, channel length modulation, and carrier heating. From testing for noise benchmark and comparing with published noise data, it is shown that the proposed noise model could be useful in simulating the MOSFET channel thermal noise in all operation regions.

Analytical Solutions of Birefringence and Dichroism Spectroscopy for the Jg = 0 → Je = 1 Transition

  • Noh, Heung-Ryoul
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.365-369
    • /
    • 2014
  • We present accurate analytical solutions of the lineshapes of birefringence (rotation) and dichroism (absorption) spectroscopy for a circular anisotropic medium composed of atoms of the transition $J_g=0{\rightarrow}J_e=1$. The susceptibility of a weak probe beam was analytically calculated and was averaged over a Maxwell-Boltzmann velocity distribution. The lineshapes of the two spectroscopies were then presented in analytical forms at arbitrary values of the linewidths of the inhomogeneous (Doppler) broadening and the homogeneous (natural) broadening of the atoms.

A Study On the Effects of Velocity Staur Velocity Saturation on the Mosfet Devices (CARRIER속도 포화가 MOSFET소자특성에 미치는 영향에 관한 연구)

  • Park, Young-June
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.6
    • /
    • pp.424-429
    • /
    • 1987
  • It has been observed that the reduction rate of the inversion layer carrier mobility due to the increase of the longitudinal electric field(drain to source direction) decreases as the transverse electric field increases. The effects of this physicar phenomenon to the I-V characteristics of the short channel NMOSFET are studied. It is shown that these effects increase the drain Current in the saturatio region, which agrees with the genarally observed decrepancy between the experimental I-V charateristics and the I-V modeling which dose not include this physical phenomenon. Also it is shown that this effect becomes more important when the device channel length decreases and the device operates in the high electric field range.

  • PDF

Effect of Air Circulation Velocity on the Rate of Lumber Drying in a Small Compartment Wood Drying Kiln (소형 목재인공건조실에 있어서 공기순환속도가 목재건조율에 미치는 영향)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.5-7
    • /
    • 1974
  • 1. This study indicates that above the fiber saturation point the drying rate can be increased with increasing the velocity of the air circutation, i.e., the drying rate of sample boards is proportional to the air velocity, but below the fiber saturation point, the effect of the velocity of air circulation is very low as shown in Figs. 1 and 2. 2. Under the controlled temperature and humidity in the kiln, the more the sample boards have moisture, the higher drying rate of it can be obtained. In other words, this means that even though in the case of drying various moisture content of wood, at the final drying stage, approximately the same percentage of moisture content of wood can be secured by employing the higher velocity of air circulation. 3. This study shows that the rate of drying in kiln changes distinctly at the fiber saturation point, i, e., above the fiber saturation point, the drying curve shows concave aginst the X axsis, but below the fiber saturation point, in the range from 30 percent of moisture content to 20 percent of moisture content, the curve shows convex as shown in Fig. 3. As the drying progresses, however, the drying curve shows concave again below 20 percent of moisture content. This means that inflection point of drying curve may be located clearly at the fiber saturation point, i.e., 30 percent of moisture content. As mentioned above, the 30 percent of moisture content of wood at which the inflectional point appears can be recognized as a critical point, i. e., the fiber saturation point at which all free water was removed from wood. The existence of inflectional point indicates that the evaporation of hygroscopic water in a cell wall is more difficult than the evaporation of free water in a cell cavity and the minor space of cell wall. The convex curve in the range of moisture content from 30 percent to 20 percent means that the evaporation of capillary condensed water has a tendency of the same rates of drying approximately, but as approaching to the 20 percent of moisture, the transfusion of moisture from wood becomes difficult because of having less moisture in cell wall. Below 20 percent of moisture content, the drying curve shows concave again, which means that it is difficult to remove the moisture located nearer to the surface of cellulose molecules and the surface bound water. These relations were revealed in Fig. 4. In comparison AC curve which does not have the two inflection points with BD curve which has two inflection points, i.e., Band D, they are mentioned already, by existence of the inflection points, the curve BD shows that the change of drying rate in the interval from 20 percent of moisture content to 30 percent of moisture content is not greater than in the case of the curve AC in the same interval. At the inflection point of 30 percent of moisture content, it can be noticed that the changing of the drying rate is very conspicuous. This phenomenon also can be recognized, as it is noticed by the Fig. 3, the drying rate from green to 30 percent of moisture content is very great. But the inclination of the curve is very slow from 30 percent of moisture content to 20 percent of moisture content, i.e., the inclination of the curve becomes almost horizontal lines. Acknowledgments Gratitude is expressed to Fred E. Dickinson, Professor of 'Wood Technology, School of Natural Resources, University of Michigan, USA for his suggestion to carry out this study.

  • PDF

Pre-Charged Particle Deposition in an Impactor subjected to an Electric Field (전기장이 형성된 관성 충돌기에서 대전 입자의 거동과 부착 특성에 대한 연구)

  • Park, Hyung-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.299-310
    • /
    • 1999
  • Effect of electrostatic and inertial forces on the pre-charged particle deposition was theoretically and experimentally studied by introducing the inertia impactor subjected to an electric field. To derive the analytic solution, we assumed that a flow was an ideal stagnation flow, a particle had saturation charges, and the electric field within the test section was uniform. On the other hand, $Al_2O_3$ particle groups were used as the test particles, which mean sizes were $1{\mu}m$, $3{\mu}m$, and $5{\mu}m$. To measure the deposition efficiency, the light scattering method was used. The results showed that the deposition efficiency was minimized at a certain nozzle velocity as increasing the nozzle velocity, only if the electric force was applied. As the electric field strength increased, $Stk_{50}{^{1/2}}$ was decreased, and its decreasing rate was reduced with increasing the flow velocity. Moreover the existence of electric field was against the cut-off performance of the inertia impactor.

Effects of Relative Humidity on the Evaporator Pressure Drop (증발기의 압력강하에 대한 상대습도의 영향)

  • 김창덕;강신형;박일환;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.

Experimental Study on the Effect of DC Electric Field on Extinction Characteristics of Counterflow Diffusion Flame (대향류 확산화염의 소염특성에 미치는 직류전기장의 영향에 관한 실험적 연구)

  • Park, I.H.;Kim, M.K.;Won, S.H.;Cha, M.S.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.253-259
    • /
    • 2006
  • The effect of DC electric fields on the flame extinction was investigated experimentally in counterflow configurations for the methane/oxygen/nitrogen diffusion flame. The electric fields was applied by connecting the high voltage and ground terminals to the upper and lower burners, respectively. In case of having electric fields, several modes of flame extinction was observed according to the electric field intensity and strain rate defined by the exit velocity. To visualize and characterize the flame structure and intensity, planar LIF technique was adopted for OH radicals. Consequently, several length scales, including the flame width, thickness, and height from the burner tip, were introduced to explain the various flame behaviors and to characterize the flame extinctions. It was found that the variation of flame width and the chemical reaction are strongly related to a critical electric field intensity, thus the various modes of diffusion flame extinction could be observed due to the electric fields.

  • PDF

Formation characteristics of gas hydrate in sediments (퇴적층에서의 가스 하이드레이트 생성 특성)

  • Lee, Jae-Hyoung;Lee, Won-Suk;Kim, Se-Joon;Kim, Hyun-Tae;Huh, Dae-Gi
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.630-633
    • /
    • 2005
  • Some gases can be formed into hydrate by physical combination with water under appropriate temperature and pressure condition. Besides them, it was found that the pore size of the sediments can affect the formation and dissociation of hydrate. In this study, formation temperatures of carbon dioxide and methane hydrate have been measured using isobaric method to investigate the effects of flow rates of gases on formation condition of hydrate in porous rock samples. The flow rates of gases were controlled using a mass flow controller. To minimize Memory effect, system temperature increased for the dissociation of gas hydrates and re-established the initial saturation. The results show that the formation temperature of hydrate decreases with increasing the injection flow rate of gas. This indicates that the velocity of gas in porous media may act as kinds of inhibitor for the formation of hydrate.

  • PDF

Analysis of Seepage Velocity in Unsaturated Weathered Soils Using Rainfall Infiltration Test (강우침투실험을 통한 불포화 풍화토 지반의 강우 침투속도 분석)

  • Kim, Hoon;Shin, Ho-Sung;Kim, Yun-Tae;Park, Dug-Keun;Min, Tuk-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • Rainfall infiltration test under one dimensional condition is conducted to evaluate the effect of rainfall intensity on seepage velocity and infiltration characteristics for initial unsaturated sediment. Experimental results are compared with those numerical simulations with respect to variations of pore water pressure, degree of saturation and discharge velocity with time, and both results give good agreement. High rainfall intensity tends to increase seepage velocity almost linearly. But it shows rapid increase as rainfall intensity approaches saturated hydraulic conductivity of the sediment. In addition, the upper part of wetting front depth is partially saturated, not fully. Therefore, actual wetting front depth is considered to advance faster than theoretical prediction, which leads to slope instability of unsaturated slope due to surface rainfall.

The Effect of the Flow Paths of the Wastewater to the Performance of the Vegetative Filter Strip for Phosphorus Removal (축산 폐수 이동경로가 초생대의 인제거 기능에 미치는 영향)

  • Kim , Young-Jin;Yu , Chan;Geohring , Larry D;Steenhuis , Tammo S.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.155-163
    • /
    • 2004
  • The objectives of this study were to characterize the wastewater flow through the VFS, and relate this to the P removal in the VFS. A total of 68 subsurface wells (20∼40 cm below the soil surface) and 35 surface wells (0~5 cm), and the application of chloride tracer were used to investigate flow paths and soluble reactive P (SRP) removal from the 21 m wide and 33 m long VFS receiving dairy milkhouse waste. The early chloride breakthroughs in wells in the center of the VFS showed that the milkhouse waste flows preferentially down in the center of the hillslope. The locally saturated area created near the discharge pipe in the center of the VFS accelerates surface flow that contributed to rapid transport of P to the down slope area. Although VFS of 33m long eventually reduced SRP to lower than 0.2 mg/L in most cases, SRP is less effectively removed in the areas where soil saturation occurred. It is suggested that the effort to distribute the wastewater uniformly to avoid soil saturation and reduce the flow velocity need to be considered in new designs.