• Title/Summary/Keyword: velocity of ultrasonic wave

Search Result 232, Processing Time 0.024 seconds

Temperature Effect on Ultrasonic Stress Wave Velocity of Wood (목재 초음파 전달속도에 대한 온도의 영향)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • Since ultrasonic stress wave velocity varies with wood temperature and moisture content, ultrasonic stress wave could be a tool to predict wood moisture content if temperature effect could be eliminated. This temperature effect was investigated by measuring the velocities of ultrasonic stress waves transmitting through air, a metal bar and a dimension lumber at various temperatures. For air the velocity and amplitude of the ultrasonic stress wave increase with temperature, while for a metal bar and a dimension lumber those decrease as temperature increases. However all three materials showed velocity hystereses with a temperature cycle. The effect of temperature and moisture content on stress wave velocity of a dimension lumber was depicted in the form of a three dimensional graph. The plot of stress wave velocity vs. wood moisture content was well fitted by two regression equations: a exponential equation below 46% and a linear equation above 46%.

  • PDF

A Study on Factors Influencing P-wave Velocity of Concrete (콘크리트의 P파 속도에 영향을 주는 인자에 관한 연구)

  • 이광명;이회근;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.725-730
    • /
    • 1998
  • Recently, non-destructive tests are getting popular in evaluating concrete properties without braking specimens. Among several NDT methods, P-wave velocity measurement technique has been widely used to evaluate the stiffness and strength of concrete. The purpose of this study is to investigate factors influencing P-wave velocity measured by impact-resonant method and ultrasonic pulse velocity method, such as moisture content of concrete, existence and size of coarse aggregates, sensor and sampling rate. Test results show that rod-wave velocity measured by impact-resonant method and ultrasonic pulse velocity are significantly affected by the moisture content of concrete, i.e., the lower moisture content, the lower velocity. Moisture content influences rod-wave velocity stronger than ultrasonic pulse velocity. Rod-wave velocity is faster in concrete than in mortar and is also faster in concrete containing small size aggregates. Sensor and sampling rate have little influence on velocity.

  • PDF

Assessing the effects of mineral content and porosity on ultrasonic wave velocity

  • Fereidooni, Davood
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.399-406
    • /
    • 2018
  • The influences of mineral content and porosity on ultrasonic wave velocity were assessed for ten hornfelsic rocks collected from southern and western parts of the city of Hamedan, western Iran. Selected rock samples were subjected to mineralogical, physical, and index laboratory tests. The tested rocks contain quartz, feldspar, biotite, muscovite, garnet, sillimanite, kyanite, staurolite, graphite and other fine grained cryptocrystalline matrix materials. The values of dry unit weight of the rocks were high, but the values of porosity and water absorption were low. In the rocks, the values of dry unit weight are related to the presence of dense minerals such as garnet so not affected by porosity. The statistical relationships between mineral content, porosity and ultrasonic wave velocity indicated that the porosity is the most important factor influencing ultrasonic wave velocity of the studied rocks. The values of P-wave velocity of the rocks range from moderate to very high. Empirical equations, relevant to different parameters of the rocks, were proposed to determine the rocks' essential characteristics such as primary and secondary wave velocities. Quality indexes (IQ) of the studied samples were determined based on P-wave velocities of them and their composing minerals and the samples were classified as non-fissured to moderately fissured rocks. Also, all tested samples are classified as slightly fissured rocks according to the ratio of S-wave to P-wave velocities.

Measurement of Ultrasonic Wave Velocity Changes in Silica-Sand Specimens with Voids (공극을 포함한 실리카샌드 시편의 초음파 속도변화 측정)

  • Kim, Dae-You;Rhim, Hong-Chul;Cho, Youn-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.48-49
    • /
    • 2017
  • In order to examine the effect of voids on the ultrasonic wave velocity, specimens made of Silica-Sand with voids were prepared for the measurements. The volume fraction of 0, 15, and 30% of voids were used to compare the differences. Because of its more homogeneous distribution of materials properties, the Silica-Sand specimens were used, as compared to mortar specimens. The results showed clear change in ultrasonic wave velocity with different volume fraction of voids. This result is to be used for the estimation of the integrity of concrete structures using ultrasonic wave velocity method as nondestructive testing.

  • PDF

Applicability of Coda Wave Interferometry Technique for Measurement of Acoustoelastic Effect of Concrete

  • Shin, Sung Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.6
    • /
    • pp.428-434
    • /
    • 2014
  • In this study, we examined the applicability of coda wave interferometry (CWI) technique, which was developed to characterize seismic waves, to detect and evaluate change in the velocity of ultrasonic waves in concrete due to acoustoelastic effect. Ultrasonic wave measurements and compressive loading tests were conducted on a concrete specimen. The measured wave signals were processed with CWI to detect and evaluate the relative velocity change with respect to the stress state of the specimen. A phase change due to the acoustoelastic effect of concrete was clearly detected in the late-arriving coda wave. This shows that the relative velocity change of ultrasonic waves in concrete due to the acoustoelastic effect can be evaluated successfully and precisely using CWI.

Measurement of Ultrasonic Speed for Evaluating Compressive Strength of Solidified Low & Intermediate-Level Radioactive Wastes (중·저준위 방사성폐기물 고화체의 압축강도 평가를 위한 초음파속도 측정)

  • Moon, Gyoon Young;Lee, Tae Hun;Moon, Yong Sig
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.4
    • /
    • pp.26-30
    • /
    • 2011
  • In order to ship low & Intermediate level radioactive waste drums, which have been temporarily stored on site, to a disposal facility, their physical and chemical properties should be evaluated and proven to meet the acceptance guideline prior to their shipment. Ultrasonic velocity method, which has been used to estimate the strength of concrete, can be suggested to evaluate the compressive strength of solidified radioactive waste, which is one of the evaluated properties. The strength is estimated from acoustic velocity. However, a guided wave traveling along a drum is generated when applying ultrasonic method to the drum, and this makes it difficult to analyze the signal due to overlap between transmitted wave through the contents in drum and the guided wave. This paper reported feasibility of ultrasonic method to evaluate of the compressive strength of the solidified LLW. It is observed that the guide wave is greater than transmitted wave, and ultrasonic velocity could be estimated from transmitted wave signal arriving prior to the guided wave

The Characteristics of Ultrasonic Wave Transmitted Through Drying Wood

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • The possibility of using the properties of an ultrasonic wave as a means for monitoring the moisture content of a board during drying was investigated. The ultrasonic wave signals are influenced by moisture content and other factors such as temperature, moisture gradient and coupling area. The effect of temperature was examined by measuring the transit times, amplitudes and velocities of ultrasonic waves transmitted through air, a metal bar and a board at various temperatures. The effect of a moisture gradient was studied using a model specimen composing five wood pieces of various moisture contents. The velocity and amplitude of the ultrasonic waves transmitted through air increase with temperature, while those through a metal bar and a board decrease. It was confirmed that the temperature effect is partially attributed to the change of transducer's properties. The effect of a moisture gradient on the velocity of an ultrasonic wave varies with the average moisture content of a board. As the dimension of the end face of a board increases the velocity of an ultrasonic wave increases and low frequency components more dominates than high frequency components. The transit times of ultrasonic waves transmitted through a board during kiln drying reflect the temperature steps in the drying schedule and the transducer temperatures.

Influence of Moisture Content on Longitudinal Wave Velocity in Concrete (수분 함유량이 콘크리트의 종파 속도에 미치는 영향에 관한 연구)

  • Lee, H.K.;Lee, K.M.;Kim, J.S.;Kim, D.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.259-269
    • /
    • 1999
  • Elastic wave velocity measurement technique such as impact-echo method and ultrasonic pulse velocity method has been successfully used to evaluate the moduli and strength of concrete. However, estimation results obtained by the NDT methods do not agree well with real things because longitudinal wave velocity is influenced by various factors. In this paper, among several factors influencing P-wave velocity, the influence of moisture content in concrete was investigated through the experiment. Test results show that longitudinal wave velocity is significantly affected by the moisture content of concrete, i.e., the lower moisture content. the lower velocity. Moisture content influences rod-wave velocity measured by impact-echo method stronger than ultrasonic pulse velocity measured by transmission method. During drying process with ages. the difference of increasing rate between longitudinal wave velocity and compressive strength of concrete is gradually increased. Therefore, to establish more accurate relationship between longitudinal wave velocity and strength, the difference of the increasing rate should be considered.

  • PDF

A Study on Ultrasonic Technique for Measuring Gas Temperature (기체온도 측정을 위한 초음파 계측에 관한 연구)

  • Yoon, Cheon Han;Choi, Young;Jeon, Heung Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

Study to detect bond degradation in reinforced concrete beams using ultrasonic pulse velocity test method

  • Saleem, Muhammad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • Concrete technologists have used ultrasonic pulse velocity test for decades to evaluate the properties of concrete. However, the presented research work focuses on the use of ultrasonic pulse velocity test to study the degradation in steel-concrete bond subjected to increasing loading. A detailed experimental investigation was conducted by testing five identical beam specimens under increasing loading. The loading was increased from zero till failure in equal increments. From the experimentation, it was found that as the reinforced concrete beams were stressed from control unloaded condition till complete failure, the propagating ultrasonic wave velocity reduced. This reduction in wave velocity is attributed to the initiation, development, and propagation of internal cracking in the concrete surrounding the steel reinforcement. Using both direct and semidirect methods of testing, results of reduction in wave velocity with evidence of internal cracking at steel-concrete interface are presented. From the presented results and discussion, it can be concluded that the UPV test method can be successfully employed to identify zones of poor bonding along the length of reinforced concrete beam. The information gathered by such testing can be used by engineers for localizing repairs thereby leading to saving of time, labor and cost of repairs. Furthermore, the implementation strategy along with real-world challenges associated with the application of the proposed technique and area of future development have also been presented.