• Title/Summary/Keyword: velocity for the feedback control

Search Result 261, Processing Time 0.023 seconds

Active Structural Acoustical Control of a Smart Structure using Uniform Force Actuator and Array of Accelerometers (균일힘 액추에이터와 가속도계 배열을 이용한 지능구조물의 능동구조 음향제어)

  • ;Stephen J Elliott;Paolo Gardonio
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.368-373
    • /
    • 2003
  • This paper presents a study of low frequencies volume velocity vibration control of a smart panel in order to reduce sound transmission. A distributed piezoelectric quadratically shaped polyvinylidene fluoride (PVDF) polymer film is used as a uniform force actuator and an array of 4$\times$4 accelerometer is used as a volume velocity sensor for the implementation of a single-input single-output con rot system. The theoretical and experimental study of sensor-actuator frequency response function sho vs that this sensor-actuator arrangement provides a required strictly positive real frequency response function below about 900Hz. Direct velocity feedback could therefore be implemented with a limited gain which gives reductions of about 15㏈ in vibration level and about 8 ㏈ in acoustic power level at the (1, 1) mode of the smart Panel. It has been also shown that the shaping error of PVDF actuator could limit he stability and performance of the control system.

  • PDF

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.265-270
    • /
    • 2001
  • This study presents a feedback control methodology for suppression of the vortex shedding from a circular cylinder in a uniform flow. A rotational oscillation is applied as a controlled forcing and the lift coefficient ($C_L$) is used as a feedback signal. A feedback control concept is made based on the phase relation between the rotation velocity and $C_L$ at 'lock-on', The phase between the forcing and the vortex formation is changed $180^{\circ}$ from the phase of enhancing the lock-on state. This concept is examined by solving the Van del Pol equation. The results are satisfactory.

  • PDF

Direct Velocity Feedback for Tip Vibration Control of a Cantilever Beam with a Non-collocated Sensor and Actuator Pair (비동위치화된 센서와 액추에이터를 이용한 외팔보의 끝단 진동에 대한 직접속도 피드백제어)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a theoretical and experimental study of a non-collocated pair of piezopolymer PVDF sensor and piezoceramic PZT actuator, which are bonded on a cantilever beam, in order to suppress unwanted vibration at the tip of the beam. The PZT actuator patch was bonded near the clamped part and the PVDF sensor, which was triangularly shaped, was bonded on the other part of the beam. This is because the triangular PVDF sensor is known that it can detect the tip velocity of a cantilever beam. Because the arrangement of the sensor and actuator pair is not collocated and overlapped each other, the pair can avoid so called 'the in-plane coupling'. The test beam is made of aluminum with the dimension of $200\times20\times2mm$, and the two PZT5H actuators are both $20\times20\times1mm$ and bonded on the beam out-of-phase, and the PVDF sensor is $178mm\times6mm\times52{\mu}m$. Before control, the sensor-actuator frequency response function is confirmed to have a nice phase response without accumulation in a reasonable frequency range of up to 5000 Hz. Both the DVFB and displacement feedback strategies made the error signal from the tip velocity (or displacement) sensor is transmitted to a power amplifier to operate the PZT actuator (secondary source). Both the control methods attenuate the magnitude of the first two resonances in the error spectrum of about 6-7 dB.

  • PDF

Robust control of a robot manipulator by means of sliding observers

  • Iwai, Z.;Mano, K.;Ohiomo, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.1075-1079
    • /
    • 1989
  • In this paper a robust control design is developed for the control of a multi-joint manipulators using sliding observer. The sliding observer is introduced to estimate the angular velocity of the links under the disturbance input. The feedback control is designed by the use of the estimated value of the angular velocity .theta.. The VSS control laws is introduced to ensure the robustness concerning the disturbance inputs. To illustrate the effectiveness of the proposed method, a computer simulation is performed for a two-joint manipulator.

  • PDF

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.

Active control of vibration of cantilever beams using PZT actuators (PZT actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.247-252
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

  • PDF

Active Vibration Control of Cantilever Beams Using PZT Actuators (PZT Actuator를 이용한 외팔보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1293-1300
    • /
    • 2008
  • This paper presents an active vibration control of cantilever beams under disturbances by a primary force. A direct velocity feedback control using a pair of PZT actuator and a velocity sensor is considered. Variation of the stability and performance with the locations of the sensor/actuator pair is investigated. It is found that the maximum gain varies with the locations of the sensor/actuator pair significantly. The maximum gain shows a symmetric distribution along the beam length with respect to the center point, although the boundary condition of the beam is unsymmetric. The control performance is affected by the location of the primary force as well as the location of the sensor/actuator pair. The active control system can more effectively reduce the vibration when the primary force is located close to the fixed boundary.

Response between Collocated Sensor and Actuator Bonded on a Smart Panel (지능판에 동위치화된 압전 센서-액추에이터의 응답특성 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.264-273
    • /
    • 2007
  • A smart panel with structural sensors and actuators for minimizing noise radiation or transmission is described in the paper with the concept of active structural acoustical control. The sensors and actuators are both quadratically shaped piezoelectric polyvinylidene fluoride(PVDF) Polymer films to implement a volume velocity sensor and uniform force actuator respectively. They are collocated on either side of the panel to take advantage of direct velocity feedback(DVFB) strategy, which can guarantee a robust stability and high performance as long as the sensor-actuator response is strictly positive real(SPR). However, the measured sensor-actuator response of the panel showed unexpected result with non-SPR property. In the paper, the reason of the non-SPR property is investigated by theoretical analysis, computer simulation and experimental verification. The investigation reveals that the arrangement of collocated piezoelectric PVDF sensor and actuator pair on a panel is not relevant to get a high feedback gain and good performance with DVFB strategy.

Vibration Control of Rotating Composite Thin-Walled Pretwisted Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.944-949
    • /
    • 2003
  • This paper addresses the control of free and dynamic response of composite rotating pretwisted blade modeled as non-uniform thin-walled beam fixed at the certain presetting and pretwisted angle and incorporating piezoelectric induced damping capabilities. A distributed piezoelectric actuator pair is used to suppress the vibrations caused by external disturbances. The blade model incorporates non-uniform features such as transverse shear, secondary warping and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration and dynamic characteristics of the blade are highlighted.

  • PDF

Real Time Control for the Position and Velocity of Robot Manipulator With Parameter Uncertainties (不確實性을 고려한 로보트 매니퓰레이터의 位置 및 速度에 대한 實時間 制御)

  • Lee, Gang-Du;Kim, Gyeong-Nyeon;Han, Seong-Hyeon;Lee, Jin;Lee, Jong-Nyeon;Kim, Hwi-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.30-40
    • /
    • 1995
  • In this paper, it is proposed a robust control scheme for real time control of a robot manipulator with parameter uncertainties. The focus of this paper is a new approach of multivariable control schemes for an assembly robot manipulator to achieve the accurate trajectory tracking by joint angles. The proposed control scheme consists of a multivariable feedforward controller and feedback controller. In this control scheme, the feedback controller consists of proportional-derivative type and is designed by the pole placement method. The feedforward controller uses the inverse of the linealized model of robot manipulator dynamics. This feedback controller ensures that each joint enables to track any reference trajectory. The proposed robot controller scheme has a computational efficiency.

  • PDF