• Title/Summary/Keyword: velocity error

Search Result 1,089, Processing Time 0.025 seconds

Development of a Aerostatic Guideway Driven by the Linear Motor (리니어모터를 이용한 초정밀 공기정압안내면 개발)

  • 박종하;황주호;박천홍;홍준희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • In order to discuss the availability of aerostatic guideways driven by the coreless linear motor to ultra precision machine tools, a prototype of guideway is designed and tested in this research. A coreless linear DC motor with the continuous force of 156N and a laser scale with the resolution of $0.01\mu\textrm{m}$ are used as the feeding system. The experiments are performed on the static stiffness, motion accuracy, positioning accuracy, microstep response and variation of velocity. The guideway also has $0.21\mu\textrm{m}$ of positioning error and $0.09\mu\textrm{m}$ of repeatability, and it shows the stable response against the $0.01\mu\textrm{m}$ resolution step command. The velocity variation of feeding system is less than 0.6%. From these results, it is confirmed that the aerostatic guideway driven by the coreless linear motion is very useful for the ultra precision machine tools.

  • PDF

Sub-micron Control Algorithm for Grinding and Polishing Aspherical Surface

  • Kim, Hyung-Tae;Yang, Hae-Jeong;Kim, Sung-Chul
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.386-393
    • /
    • 2008
  • A position control method for interpolating aspherical grinding and polishing tool path was reviewed and experimented in a nano precision machine. The position-base algorithm was reformed from the time-base algorithm, proposed in the previous study. The characteristics of the algorithm were in the velocity control loop with position feedback. The aspherical surface was divided by an interval at which each velocity and acceleration were calculated. The theoretical velocity was corrected by position error during processing. In the experiment, a machine was constructed and nano-scale linear encoders were installed at each axis. Relation between process parameters and the variation of position error was monitored and discussed. The best result from optimized parameters showed that the accuracy was 150nm and improved from the previous report.

Quadrant Protrusion error Modeling Through the Identification of Friction (마찰력 규명을 통한 상한절환 오차 모델링)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

A Study on the Path Constraint Error Reducing Trajectory Planning (Path Constraint한 궤적 계획법의 위치 오차 감소에 관한 연구)

  • Hwang, Seung-Jae;Park, Se-Woong;Kim, Dong-Jun;Kim, Kab-Il;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.843-845
    • /
    • 1995
  • There are a variety of trajectory and control algorithms available for robot trajectory tracking. Before using the enhanced trajectory and control algorithms to reduce the tracking error, we introduce the new method which reduces the tracking error by clipping the joint velocity. A lot of robot trajectory tracking methods are proposed to enhance the robot tracking, but irregular tracking errors are always accompanied. Up to now, these irregular tracking errors are gradually but uniformly reduced by introducing more complicated control algorithms. It is intuitively obvious to reduce only the big errors selectively in the irregular ones for the better performance. By heuristic method, big tracking errors in these irregular ones are assumed mostly due to the fast moving of joint with respect to the same tracking and control method. So, in this paper, we introduce a new method which reduce the big tracking errors by clippings the joint velocity with the constraint of given path. Using this method, desired trajectory tracking is obtained within the far reduced error bound. Also, this method is successfully applied to generate the path-constrained error reducing trajectories for 2-axis SCARA type robot.

  • PDF

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation (다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어)

  • 오세영;류연식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.12
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

Measurement Delay Error Compensation for GPS/INS Integrated Systems

  • Lim, You-chol;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.33.1-33
    • /
    • 2002
  • The INS provides high rate position, velocity and attitude data with good short-term stability while the GPS provides position and velocity data with long-term stability. By integrating the INS with GPS, a navigation system can be achieved to provide highly accurate navigation performance. For the best performance, time synchronization of GPS and INS data is very important in GPS/INS integrated system. But, it is impossible to synchronize them exactly due to the communication and computation time-delay. In this paper, to reduce the error caused by the measurement time-delay in GPS/INS integrated systems, error compensation methods using separate bias Kalman filter are suggested for both the...

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

A transfer alignment algorithm using velocity and quaternion partial matching methods (속도및 쿼터니언 부분 정합방식에 의한 전달정렬 알고리즘)

  • Song, Ki-Won;Jeon, Chang-Bae;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.238-243
    • /
    • 1997
  • A new transfer alignment algorithm using the velocity and the quaternion partial matching methods is proposed to reduce the effect of a ship's Y-axis flexure on the performance of azimuth error estimation of Kalman filter. The simulation results show that it can significantly reduce the effect of Y-axis flexure on error estimation by the transfer alignment algorithm. As its results, azimuth transfer alignment error is reached up to 3 mrad under proper roll and pitch attitude motion of the ship.

  • PDF

A Study of Theoretical Methods for Estimating Void Ratio Based on the Elastic Wave Velocities (탄성파 속도를 이용한 간극비 산출 식의 고찰)

  • Lee, Jong-Sub;Park, Chung-Hwa;Yoon, Sung-Min;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2013
  • The void ratio is an important parameter for reflecting the soil behavior including physical property, compressibility, and relative density. The void ratio can be obtained by laboratory test with extracted soil samples. However, the specimen has a possibility to be easily disturbed due to the stress relief when extracting, vibration during transportation, and error in experimental process. Thus, the theoretical equations have been suggested for obtaing the void ratio based on the elastic wave velocities. The objective of this paper is to verify the accuracy of the proposed analytical solution through the error norm. The paper covers the theoretical methods of Wood, Gassmann and Foti. The elastic wave velocity is determined by the Field Velocity Probe in the southern part of Korean Peninsular. And the rest parameters are assumed based on the reference values. The Gassmann method shows the high reliability on determining the void ratio. The error norm is also analyzed as substitution of every parameter. The results show every equation has various characteristics. Thus, this paper may be widely applied for obtaining the void ratio according to the field condition.