• Title/Summary/Keyword: velocity adaptation

Search Result 52, Processing Time 0.026 seconds

The Analysis of Pulse Wave Velocity of Jeju female divers (제주 해녀의 맥파전도속도 분석)

  • Lee, Han-Young
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.515-521
    • /
    • 2015
  • In this study, we tried to analyze arterial stiffness of Jeju female divers who diver into cold water without the assistance of oxygen. For this purpose we measured pulse wave velocity and ankle-brachial index of Jeju female divers and same aged females who didn't have any cardiovascular risk for comparing the vascular stiffness. The results were the following : First, the light-femoral pulse wave velocity of Jeju female divers was significantly lower than normal women of the same ages. Second, Jeju female divers's ABI showed higher tendency than normal same aged women. These result showed that Jeju female divers' body had been completed for adaptation to low temperature and high pressure water environment through a long-term immersion activities in old age, as well as due to higher physical activity levels of Jeju female divers peripheral vascular resistance was not reduced.

Adaptive Observer Based Longitudinal Control of Vehicles

  • Rhee, Hyoung-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.3
    • /
    • pp.266-272
    • /
    • 2004
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters such as mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable by the Lyapunov function candidate. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

Side Slip Angle Based Control Threshold of Vehicle Stability Control System

  • Chung Taeyoung;Yi Kyongsu
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.985-992
    • /
    • 2005
  • Vehicle Stability Control (VSC) system prevents vehicle from spinning or drifting out mainly by braking intervention. Although a control threshold of conventional VSC is designed by vehicle characteristics and centered on average drivers, it can be a redundancy to expert drivers in critical driving conditions. In this study, a manual adaptation of VSC is investigated by changing the control threshold. A control threshold can be determined by phase plane analysis of side slip angle and angular velocity which is established with various vehicle speeds and steering angles. Since vehicle side slip angle is impossible to be obtained by commercially available sensors, a side slip angle is designed and evaluated with test results. By using the estimated value, phase plane analysis is applied to determine control threshold. To evaluate an effect of control threshold, we applied a 23-DOF vehicle nonlinear model with a vehicle planar motion model based sliding controller. Controller gains are tuned as the control threshold changed. A VSC with various control thresholds makes VSC more flexible with respect to individual driver characteristics.

An adaptive control algorithm for the speed control of hydraulic-servo system (유압 서보 시스템의 속도 제어를 위한 적응제어기의 설계에 관한 연구)

  • Yun, Ji-Seop;Jo, Hyeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 1986
  • An adaptive controller which is robust to the unknown load disturbance is developed for electro-hydraulic speed control systems. Since the load disturbance degrades the performance of the controller such as a steady state error and rise time in the conventional control system, appropriate adjustment of the controller is necessary in order to obtain the desired performances. The adaptation mechanism was designed to tune the feedforward gain, based upon minimization of ITAE (integral of time-multiplied absolute error) performance. The unknown load distrubance was identified by using an analog computer from the relationship between the velocity of the hydraulic motor and the load pressure. To evaluate the performance of the controller a series of simulations and experiments were conducted for various load conditions. Both results show that the proposed adaptive controller shows abetter performance than the conventional controller in terms of the steady state error and rise time.

  • PDF

INSERTION LOSS MEASUREMENT OF SILENCERS BY DOUBLE PAIR MICROPHONE TECHNIQUE

  • Jung, S.S.;Pu, Y.C.;Kim, M.G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.704-709
    • /
    • 1994
  • The insertion loss is the measured change in power flux at a specified receiver, when the acoustic transmission path between it and the source is modified by the insertion of silencer element. Such measurements have clear and valid physical meaning particularly if the source impedance remains while the transmission path is altered. When the invarient condition is satisfied, the insertion loss is given by the ratio of the acoustic pressure in upstream to that in downstream of the silencer, and that of the particle velocity. The measurement is consisted of using an adaptation of the two microphone method to obtain the complex amplitude of the sound in upstream tube as well as in downstream tube of the silencer. Examples of the data, reduced and presented in terms of the pressure ratio and particle speed ratio, are compared with the theoretical calculations.

  • PDF

Comparison Study of Various Control Schemes for the Anti-Swing Crane (무진동 크레인의 구현을 위한 여러가지 제어방식의 비교 연구)

  • 윤지섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2399-2411
    • /
    • 1995
  • Crane operation for transporting heavy loads inherently causes swinging motion at the loads due to crane's acceleration or deceleration. This motion not only lowers the handling safety but also slows down the handling process. To complement such a problem, Korea Atomic Energy Research Institute(KAERI) has designed several anti-swing controllers using open loop and closed loop approaches. They are namely a pre-programmed feedback controller and a fuzzy controller. These controllers are implemented on a 1-ton crane system at KAERI and their control performances are compared. Test operations show that the new controllers are superior to that of conventional cranes in terms of robustness to the disturbances and adaptation capability to the change of rope length.

Performance Requirement of Ship's Speed in Docking/Anchoring Maneuvering

  • Tatsumi, Kimio;Fujii, Hidenobu;Kubota, Takashi;Okuda, Shigeyuki;Arai, Yasuo;Kouguchi, Nobuyoshi;Yamada, Kozaburo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.67-72
    • /
    • 2006
  • Questionnaire survey on performance requirement of ship’s speed such as not only accuracy but also response and robustness were carried out, and the experiments to survey the GPS performances of static and dynamic characteristics were carried out simultaneously. In this paper, the questionnaire survey focusing on docking maneuvering, some analytic results of the survey, the results of GPS performance, and the possibility of adaptation for docking maneuvering on SDME and GPS are discussed. Consequently, from the results of questionnaire survey the performance requirement of ship’s speed in docking/anchoring maneuvering have need under 1cm/sec on the standard deviation, and speed information from GPS was adopted to use maneuvering information in docking/anchoring.

  • PDF

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

Development of Mean Flow Model for Depth-Limited Vegetated Open-Channel Flows (수심의 제한을 받는 침수식생 개수로의 평균흐름 예측모형 개발)

  • Yang, Won-Jun;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.823-833
    • /
    • 2010
  • Open-channel flows with submerged vegetation show two distinct flow structures in the vegetation and upper layers. That is, the flow in the vegetation layer is featured by relatively uniform mean velocity with suppressed turbulence from shear, while the flow in the upper layer is akin to that in the plain open-channel. Due to this dual characteristics, the flow has drawn many hydraulic engineers' attentions. This study compares layer-averaged models for flows with submerged vegetation. The models are, in general, classified into two-layer and three-layer models. The two-layer model divides the flow depth into vegetation and upper layers, while the three-layer model further divides the vegetation layer into inner and outer vegetation layers depending on the influence of the bottom roughness. This study compares the two-layer model and the three layer-model. It is found that the two-layer model predicts better the average value of the velocity and the prediction by the three-layer model is sensitive to Reynolds shear stress. In the three-layer model, the mean flow in the inner vegetation layer does not affect the flow seriously, which motivates the proposal of the modified two-layer model. The two-layer model, capable of predicting non-uniform mean velocity, is based on the Reynolds stress which is linear and of power form in the upper and vegetation layers, respectively. Application results reveal that the modified two-layer model predicts the mean velocity at an accuracy similar to the two- and three-layer models, but it predicts poorly in the case of very low vegetation density.

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.21 no.3
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.