DOI QR코드

DOI QR Code

Development of Mean Flow Model for Depth-Limited Vegetated Open-Channel Flows

수심의 제한을 받는 침수식생 개수로의 평균흐름 예측모형 개발

  • 양원준 (한국환경정책평가연구원 국가기후변화적응센터) ;
  • 최성욱 (연세대학교 토목환경공학과)
  • Received : 2010.04.08
  • Accepted : 2010.08.25
  • Published : 2010.09.30

Abstract

Open-channel flows with submerged vegetation show two distinct flow structures in the vegetation and upper layers. That is, the flow in the vegetation layer is featured by relatively uniform mean velocity with suppressed turbulence from shear, while the flow in the upper layer is akin to that in the plain open-channel. Due to this dual characteristics, the flow has drawn many hydraulic engineers' attentions. This study compares layer-averaged models for flows with submerged vegetation. The models are, in general, classified into two-layer and three-layer models. The two-layer model divides the flow depth into vegetation and upper layers, while the three-layer model further divides the vegetation layer into inner and outer vegetation layers depending on the influence of the bottom roughness. This study compares the two-layer model and the three layer-model. It is found that the two-layer model predicts better the average value of the velocity and the prediction by the three-layer model is sensitive to Reynolds shear stress. In the three-layer model, the mean flow in the inner vegetation layer does not affect the flow seriously, which motivates the proposal of the modified two-layer model. The two-layer model, capable of predicting non-uniform mean velocity, is based on the Reynolds stress which is linear and of power form in the upper and vegetation layers, respectively. Application results reveal that the modified two-layer model predicts the mean velocity at an accuracy similar to the two- and three-layer models, but it predicts poorly in the case of very low vegetation density.

침수식생 개수로 흐름은 식생영역과 상부영역에 서로 다른 흐름구조를 보인다. 즉, 식생영역에서 전단으로 인해 생성되는 난류는 억제되며 비교적 균일한 유속 분포를 보이며 상부영역에서는 일반 개수로 흐름과 유사한 흐름구조를 보인다. 이와 같이 두 상이한흐름구조가 결합된 복잡한 흐름특성으로 인해 침수식생 개수로흐름은 공학적인 관심의 대상이 되어왔다. 본 연구에서는 침수식생 개수로 흐름의 층적분 모형의 비교 분석을 수행하였다. 일반적으로 식생흐름의 층적분 모형은 층의 수에 따라 2층 및 3층모형으로 구분한다. 즉, 전체 수심을 식생영역과 상부영역으로 구분하는 2층모형과 식생영역을 바닥 조도의 영향 유무에 따라 내부 및 외부 식생영역으로 구분하는 3층모형으로 분류된다. 본 연구에서는 2층모형과 3층모형을 비교하였다. 다양한 실험조건에 적용한 결과, 3층모형이 식생영역에서 유속의 변화를 고려할 수 있으나 결과는 레이놀즈응력 분포에 민감하며, 적분된 유속은 2층모형에 의한 예측 결과가 더욱 정확한 것으로 나타났다. 3층모형에서 내부 식생영역의 결과가 전체 흐름구조에 미치는 영향이 무시할 수 있으므로 이 점을 착안하여 식생영역에서 유속 변화가 고려되는 수정 2층모형을 제시하였다. 수정 2층모형에서 가정하는 레이놀즈응력 분포는 상부영역에서는 선형, 식생영역에서는 멱함수 형으로 변화한다. 다양한 조건에 적용한 결과, 수정 2층모형이 대체로 기존의 모형과 비슷한 정도의 예측을 수행하나 식생밀도가 매우 작은 흐름의 경우 예측 결과가 불량한 것으로 나타났다.

Keywords

References

  1. 최성욱, 양원준, 박문형(2003). “수심의 영향을 받는 침수 식생 개수로 흐름의 난류구조 및 고유구조.” 대한토목학회논문집, 제23권, 제3-B호, pp. 165-174.
  2. Baptist, M.J. (2005). “Modelling floodplain biogeomorphology.” Ph.D. Thesis, Delft University of Technology, The Netherlands.
  3. Choi, S.U., and Kang, H. (2004). “Reynolds stress modelling of vegetated open-channel flows.” Journal of Hydraulic Research, Vol. 42, No. 1, pp. 3-11. https://doi.org/10.1080/00221686.2004.9641178
  4. Choi, S.U., and Yang, W. (2010). “Two-layer model for depth-limited open-channel flows with submerged vegetation.” Journal of Hydraulic Research, in press.
  5. Darby, S.E. (1999). “Effect of riparian vegetation on flow resistance and flood potential.” Journal of Hydraulic Engineering, Vol. 125, No. 5, pp. 443-454. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:5(443)
  6. Ghisalberti, M., and Nepf, H.M. (2002). “Mixing layers and coherent structures in vegetated aquatic flow.” Journal of Geophysical Research, Vol. 107, No. C2, pp. 1-11.
  7. Ghisalberti, M., and Nepf, H.M. (2004). “The limited growth of vegetated shear layers.” Water Resources Research, Vol. 40, No. 7.
  8. Ghisalberti, M., and Nepf, H.M. (2006). “The structure of the shear layer in flows over rigid and flexible canopies.” Environmental Fluid Mechanics, Vol. 6, pp. 277-301. https://doi.org/10.1007/s10652-006-0002-4
  9. Hoffmann, M.R., and Meer, F.M. (2002). “A simple space-time averaged porous media model for flow in densely vegetated channels.” Computational Methods and Water Resources, pp. 1661-1668.
  10. Huai, W.X., Zeng, Y.H., Xu, Z.G., and Yang, Z.H. (2009). “Three-layer model for vertical distribution in open channel flow with submerged rigid vegetation.” Advances in Water Resources, Vol. 32, No. 4, pp. 487-492. https://doi.org/10.1016/j.advwatres.2008.11.014
  11. Huthoff, F., Augustijn, D.C.M., and Hulscher, S.J.M.H. (2007). “Analytical solution of the depth-averaged flow velocity in case of submerged rigid cylindrical vegetation.” Water Resources Research, Vol. 43, No. 6.
  12. Ikeda, S., and Kanazawa, M. (1996). “Three-dimensional organized vortices above flexible water plants.” Journal of Hydraulic Engineering, Vol. 122, No. 11, pp. 634-640. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:11(634)
  13. Klopstra, D., Barneveld, H.J., Noortwijk, J.M., and Velzen, E.H. (1997). “Analytical model for hydraulic roughness of submerged vegetation.” Proc. 27th IAHR Congress, pp. 775-780.
  14. Kouwen, N., and Fathi-Moghadam, M. (2000). “Friction factors for coniferous trees along rivers.” Journal of Hydraulic Engineering, Vol. 126, No. 10, pp. 732-740. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:10(732)
  15. Lopez, F. (1997). “Open-channel flow with roughness elements of different spanwise aspect ratios: Turbulent structure and numerical modeling.” Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
  16. Lopez, F., and Garcia, M. (1998). “Open-channel flow through simulated vegetation: suspended sediment transport modeling.” Water Resources Research, Vol. 34, No. 9, pp. 2341-2352. https://doi.org/10.1029/98WR01922
  17. Neary, V.S. (2003). “Numerical solution of fully developed flow with vegetative resistance.” Journal Engineering Mechanics, Vol. 129, No. 5, pp. 558-563. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:5(558)
  18. Nepf, H.M., and Vivoni, E.R. (2000). “Flow structure in depth-limited, vegetated flow.” Journal of Geophysical Research, AGU, Vol. 105, No. C12, pp. 28547-28557. https://doi.org/10.1029/2000JC900145
  19. Poggi, D., Porporato, A., and Ridolfi, L. (2004). “The effect of vegetation density on canopy sub-layer turbulence.” Boundary-Layer Meteorology, Vol. 111, pp. 565-587. https://doi.org/10.1023/B:BOUN.0000016576.05621.73
  20. Raupach, M.R. (1984). “A lagrangian analysis of scalar transfer in vegetation canopies.” Journal of Royan Meteorological Society, Vol. 113, No. 475, pp. 107-120.
  21. Ree, W.O., and Crow, F.R. (1977). “Friction factors for vegetated waterways of small slope.” Technical Report Publication S-151 of U.S. Department of Agriculture, Agricultural Research Service.
  22. Righetti, M., and Armanini, A. (2002). “Flow resistance in open-channel flows with sparsely distributed bushes.” Journal of Hydrology, Vol. 269, No. 1-2, pp. 55-64. https://doi.org/10.1016/S0022-1694(02)00194-4
  23. Rowinski, P.M., and Kubrak, J. (2002). “A mixing-length model for predicting vertical velocity distribution in flow through emergent vegetation.” Hydrologic Science Journal, Vol. 47, No. 6, pp. 893-904. https://doi.org/10.1080/02626660209492998
  24. Shimizu, Y., and Tsujimoto, T. (1994). “Numerical analysis of turbulent open-channel flow over a vegetation layer using a k-e turbulence model.” Journal of Hydroscience and Hydraulic Engineering, Vol. 11, No. 2, pp. 57-67.
  25. Stephan, U., and Gutknecht, D. (2002). “Hydraulic resistance of submerged flexible vegetation.” Journal of Hydrology, Vol. 269, pp. 27-43. https://doi.org/10.1016/S0022-1694(02)00192-0
  26. Stone, B.M., and Shen, H.T. (2002). “Hydraulic resistance of flow in channels with cylindrical roughness.” Journal of Hydraulic Engineering, Vol. 128, No. 5, pp. 500-506. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  27. Thompson, G.T., and Robertson, J.A. (1976). “A theory of flow resistance for vegetated channels.” Transactions of ASAE, Vol. 19, No. 2, pp. 288-293. https://doi.org/10.13031/2013.36014
  28. Tsujimoto, T., and Kitamura, T. (1990). “Velocity profile of flow in vegetated bed channels.” KHL progressive report1, Kanazawa University, Kanazawa, Japan.
  29. Velasco, D., Bateman, A., and DeMedian, V. (2008). “A new integrated, hydro-mechanical model applied to flexible vegetation in riverbeds.” River, Coastal and Estuarine Morpho dynamics: RCEM2005, IL, U.S.A., pp. 217-227.
  30. Wilson, C.A.M.E., Stoesser, T., Bates, P.D., and Pinzen, A.B. (2003). “Open-channel flow through different forms of submerged flexible vegetation.” Journal of Hydraulic Engineering, Vol. 129, No. 11, pp. 847-853. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(847)
  31. Yang, W., and Choi, S.U. (2009). “Impact of stem flexibility on mean flow and turbulence structure in open-channel flows with submerged vegetation.” Journal of Hydraulic Research, Vol. 47, No. 4, pp. 445-454. https://doi.org/10.1080/00221686.2009.9522020