• Title/Summary/Keyword: velocity

Search Result 23,195, Processing Time 0.044 seconds

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • v.10 no.1
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Seismic Performance Evaluation of Seismically Isolated Nuclear Power Plants Considering Various Velocity-Dependent Friction Coefficient of Friction Pendulum System (마찰진자시스템의 마찰계수 변화에 따른 면진된 원전구조물의 거동특성 비교)

  • Seok, Cheol-Geun;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.125-134
    • /
    • 2016
  • In order to improve seismic safety of nuclear power plant (NPP) structures in high seismicity area, seismic isolation system can be adapted. In this study, friction pendulum system (FPS) is used as the seismic isolation system. According to Coulomb's friction theory, friction coefficient is constant regardless of bearing pressure and sliding velocity. However, friction coefficient under actual situation can be changed according to bearing pressure, sliding velocity and temperature. Seismic responses of friction pendulum system with constant friction and various velocity-dependent friction are compared. The velocity-dependent friction coefficients of FPS are varied between low-and fast-velocity friction coefficients according to sliding velocity. From the results of seismic analysis of FPS with various cases of friction coefficient, it can be observed that the yield force of FPS becomes larger as the fast-velocity friction coefficient becomes larger. Also, the displacement response of FPS becomes smaller as the fast-velocity coefficient becomes larger.

A Controller Based on Velocity Estimator for a Wheeled Inverted Pendulum Running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 속도 추정기 기반 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.283-289
    • /
    • 2011
  • In this research a controller based on velocity estimator for a Wheeled Inverted Pendulum (WIP) is designed and various numerical simulation studies are carried out. The WIP has stable and unstable equivalent points. To Keep the unstable equilibrium point, a controller should control carefully the wheels persistently. There are angle, angular velocity, displacement, and velocity of the WIP for controller inputs. The velocity is obtained by differentiating the encoder signals from the motor and is subject to the resolution of the encoder. An improved velocity detection method is proposed based on low resolution encoder and velocity estimator. Various numerical simulations are carried out for showing the validation of the velocity estimator in case of the inclined road condition.

Is There a Difference in Blood Flow Velocity between Bilateral Common Carotid Arterises in Community-Dwelling Elderly with Unilateral Chewing Habit and Forward Head Posture?: An Observational Cross-Sectional Study

  • Bae, Youngsook
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.1
    • /
    • pp.1954-1959
    • /
    • 2020
  • Background: Due to aging, blood flow rate decreases, also posture and chewing habit may be changed. Objective: To identify that changes in blood velocity in the common carotid arteries (CCAs) in old persons with unilateral chewing habit (UCH) and forward head posture (FHP) in the elderly. Design: An observational cross-sectional study. Methods: Chewing habits, FHP, and CCAs velocities were assessed in 85 elderly subjects. Chewing habits were measured by visual observation. CCAs measured the peak systolic velocity (PSV), end-diastolic velocity (EDV), minimum diastolic velocity, and resistivity index. The subjects were divided into UCH and bilateral chewing habit groups depending on chewing habit. The subjects were also divided into >49 degrees and <49 degrees for comparison of blood flow between the left and right CCAs. Results: In the UCH, the chewing side had significantly higher EDV (P=.003), PSV (P=.023) than the non-chewing side. There was no significant difference in velocity between the CCAs in the FHP. Conclusion: This study shows that the blood flow velocity of the chewing side of UCH was higher, and unilateral chewing affects the CCAs velocity and thus highlight the importance of chewing habit in the elderly than head posture.

Measurements of Velocity Profiles Inside a Partially Filled Pipeline Using PIV (PIV를 이용한 비만관내 유속 분포 측정)

  • Choi, Jung-Geun;Sung, Jae-Yong;Lee, Moung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.773-778
    • /
    • 2006
  • Velocity profiles inside a partially filled pipline have been investigated experimentally. To measure the velocity fields, a particle image velocimetry (PIV), which is a recent quantitative visualization technique, is applied. The velocity profile inside a circular pipe is well known, but if the pipe is partially filled, the problem is entirely different in the sense that the velocity distribution is significantly affected by the slope of pipe and filled water level, and so on. In order to calculate exact flow rate in the open channel or partially filled pipeline, three-dimensional velocity distributions at a given cross-sectional area are measured and compared the flow rates with the previously known empirical formula of Manning equation. The results show that the velocity profiles at center plane is considerably different from each other when the slope and water level change. Thus, The three-dimensional velocity profile can be the most plausible estimate for the exact flow rate.

  • PDF

Dispersion of Rayleigh Waves in the Korean Peninsula

  • Cho, Kwang-Hyun;Lee, Kie-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.231-240
    • /
    • 2006
  • The crustal structure of the Korean Peninsula was investigated by analyzing phase velocity dispersion data of Rayleigh waves. Earthquakes recorded by three component broad-band velocity seismographs during 1999-2004 in South Korea were used in this study. The fundamental mode Rayleigh waves were extracted from vertical components of seismograms by multiple filter technique and phase match filter method. Phase velocity dispersion curves of the fundamental mode signal pairs for 14 surface wave propagation paths on the great circle in the range 10 to 80 sec were computed by two-station method. Treating the shear velocity of each layer as an independent parameter, phase velocity data of Rayleigh wave were inverted. All the result models can be explained by a rather homogeneous crust of shear-wave velocity increasing from 2.8 to 3.25 km/sec from top to about 33 km depth without any distinctive crustal discontinuities and an uppermost mantle of shear-wave velocity between 4.55 and 4.67 km/sec. Our results turn out to agree well with recent study of Cho et al. (2006 b) based on the analysis of seismic background noises to recover short-period (0.5-20 sec) Rayleigh- and Love-wave group velocity dispersion characteristics.

  • PDF

Determination of Shear Wave Velocity Profile Model Considering Uncertainty Caused by Spatial Variation of Material Property in Rockfill Zone of Fill Dam (물성치 변동성에 의한 불확실성이 고려된 국내 필댐 사력부를 위한 전단파 속도 주상도 모델)

  • Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.29-36
    • /
    • 2019
  • There always exist the spatial variations of material properties such as a shear wave velocity in a dam and between same type dams. These uncertainties cause those in evaluation of a shear wave velocity profile of a dam and should be considered in determining the shear wave velocity profile for a rockfill zone of a fill dam. In this paper, these uncertainties of a shear wave velocity in the rockfill zone of the fill dam in Korea are evaluated. And the shear wave velocity profile model considering these uncertainties in rockfillzone is proposed using the method based on Harmonic wavelet transform. The proposed shear wave velocity profile model is compared with Sawada-Takahashi model widely used for evaluation of a shear wave velocity profile of a rockfill zone of fill dams.

Experiment and modeling of liquid-phase flow in a venturi tube using stereoscopic PIV

  • Song, Yuchen;Shentu, Yunqi;Qian, Yalan;Yin, Junlian;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.79-92
    • /
    • 2021
  • Venturi tube is based on turbulent flow, whereby the microbubbles can be generated by the turbulent fragmentation. This phenomenon is common in several venturi bubblers used by the nuclear, aerospace and chemical industries. The first objective of this paper is to study the liquid-phase velocity field experimentally and develop correlations for the turbulent quantities. The second objective is to research velocity field characteristics theoretically. Stereoscopic PIV measurements for the velocity field have been analyzed and utilized to develop the turbulent kinetic energy in the venturi tube. The tracking properties of the tracer particles have been verified enough for us to analyze the turbulence field. The turbulence kinetic energy has a bimodal distribution trend. Also, the results of turbulence intensity along the horizontal direction is gradually uniform along the downstream. Both the mean velocity and the fluctuation velocity are proportional to the Reynolds number. Besides, the distribution trend of the mean velocity and the velocity fluctuation can be determined by the geometric parameters of the venturi tube. An analytical function model for the flow field has been developed to obtain the approximate analytical solutions. Good agreement is observed between the model predictions and experimental data.

Flow and Heat Transfer Characteristics of Heat Exchanger Tube Bank with the Sinusoidal Inlet Velocity (정현파 입구 속도 변동에 따른 열교환기 관군의 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2021
  • The change of the vorticity and the temperature distribution in heat exchanger tube bank were analyzed for the flows with the constant inlet velocity and the sinusoidal inlet velocity. The flow frequency characteristics were examined by analyzing power spectral density of lift and drag at a typical circular tube in the tube bank. Karman vortex street could be seen at the upstream region of tube bank for the case of constant inlet velocity. It could be seen that the Karman vortex street was affected by the change of inlet velocity near the circular tubes for the case with the sinusoidal inlet velocity. It was observed that the unsteady temperature distributions for both inlet velocity conditions had almost the same motion as the flow vorticity behavior. The flow frequency for the case with the constant inlet velocity is 37.25Hz, and that with the sinusoidal inlet velocity, the flow frequency is 18.63Hz, which is equal to the sinusoidal inlet velocity. The mean surface Nusselt number(Nu) for overall heat exchanger tube bank was 1051 for the case with the constant inlet velocity and 1117 for the case with the sinusoidal inlet velocity. From the result of heat transfer analysis, it could be seen that Nu with the sinusoidal inlet velocity showed 6.3% increase than that with the constant inlet velocity.

Predicting the Transport Velocity by the Correlation on Particle Entrainment Rate in the Gas Fluidized-bed (기체 유동층에서 입자 비산속도 상관식에 의한 수송속도의 예측)

  • Won, Yoo Sube;Khurram, Muhammad Shahzad;Jeong, A Reum;Choi, Jeong-Hoo;Ryu, Ho-Jung
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.638-645
    • /
    • 2017
  • A model for predicting the transport velocity was proposed using the correlation of the particle entrainment rate in the gas fluidized bed. The emptying time method was simulated using correlations of Choi et al. and Li and Kato. In order to exclude the influence of the unit of the gas velocity, the dimensionless velocity obtained by dividing the gas velocity by the terminal velocity was used as the value of the x-axis. The inverse of the particle entrainment rate was used as the value of the y-axis. When increasing the gas velocity, the non-dimensional velocity, at which the decreasing slope of the y-value is 0.398 [$m^2s/kg$] in absolute value, was considered as the transport velocity. The transport velocity predicted by the model was in good agreement even at high temperature and high pressure.