• Title/Summary/Keyword: vehicle vibration

Search Result 1,742, Processing Time 0.031 seconds

Driving safety analysis of various types of vehicles on long-span bridges in crosswinds considering aerodynamic interference

  • Han, Yan;Huang, Jingwen;Cai, C.S.;Chen, Suren;He, Xuhui
    • Wind and Structures
    • /
    • v.29 no.4
    • /
    • pp.279-297
    • /
    • 2019
  • Strong winds threaten the safety of vehicles on long-span bridges considerably, which could force traffic authorities to reduce speed limits or even close these bridges to traffic. In order to maintain the safe and economic operation of a bridge, a reasonable evaluation of the driving safety on that bridge is needed. This paper aims at carrying outdriving safety analyses for three types of vehicles on a long-span bridge in crosswinds by considering the aerodynamic interference between the bridge and the vehicles based on the wind-vehicle-bridge coupling vibration analysis. Firstly, CFD numerical simulations along with previously obtained wind tunnel testing results were used to determine the aerodynamic force coefficients of the three types of vehicles on the bridge. Secondly, the dynamic responses of the bridge and the vehicles under crosswinds were simulated, and based on those, the driving safety analyses for the three types of vehicles on the bridge were carried out for both cases considering and not considering the aerodynamic interference between the vehicles and the bridge. Finally, the effect of the aerodynamic interference on the safety of the vehicles was investigated. The results show that the aerodynamic interference between the bridge and the vehicles not only affectsthe accident critical wind speed but also the accident type for all three types of vehicles. Such effects are also different for each of the three types of vehicles being studied.

An Evaluation for Structural Performance of Suspension Bridge by using the Natural Frequency of Hanger Member (행거의 고유진동수를 이용한 현수교의 구조적 성능 평가)

  • Wu, Sang Ik;Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.285-293
    • /
    • 2004
  • As a special infrastructure, it is important that the suspension bridges which were designed by using the cable are carefully maintained and safely inspected after their construction, more than what is done in other cases of bridge structures. However, the structural analysis for their design and maintenance has considered only the simplified geometric shape of the structure. Particularly, it is not easy to make the modeling analyze the bridge structure including detailed steel deck plates. In this paper, we evaluated the structural behaviors and performances of the completed earth-anchored suspension bridge that was in a completed state through both the tension of hanger member and their computational analysis. We considered the frame system and the detailed steel deck plates that were especially added into the modeling to take more precision analysis about it. We also applied hanger tensions converted by the natural frequency and the natural frequency of the bridge when in normal vibration. Results of the vehicle loading test were used in the analysis. We compared the results by using our modeling with the result of the loading test and the hanger tension. Our prediction on the behavior of the structure emulates the behavior of the real structure. In applying the data measured by the typhoon "Maemi" which arrived in-land last year, we confirmed our analysis model for the possibility of applying effectively into the preliminary design and maintenance plan.

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

Active Control of Harmonic Signal Based on On-line Fundamental Frequency Tracking Method (실시간 기본주파수 추종방법에 근간한 조화 신호의 능동제어)

  • 김선민;박영진
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1059-1066
    • /
    • 2000
  • In this paper. a new indirect feedback active noise control (ANC) scheme barred on the fundamental frequency estimation is proposed for systems with a harmonic noise. When reference signals necessary for feedforward ANC configuration are difficult to obtain, the conventional ANC algorithms for multi-tonal noise do not measure the reference signals but generate them with the estimated frequencies.$^{(4)}$ However, the beating phenomena, in which certain frequency components of the noise vanish intermittently, may make the adaptive frequency estimation difficult. The confusion in the estimated frequencies due to the beating phenomena makes the generated reference signals worthless. The proposed algorithm consists of two parts. The first part is a reference generator using the fundamental frequency estimation and the second one is the conventional feedforward control. We propose the fundamental frequency estimation algorithm using decision rules. which is insensitive to the beating phenomena. In addition, the proposed fundamental frequency estimation algorithm has good tracking capability and lower variance of frequency estimation error than that of the conventional cascade ANF method.$^{(4)}$ We are also able to control all interested modes of the noise, even which cannot be estimated by the conventional frequency estimation method because of the poor S/N ratio. We verify the performance of the proposed ANC method through simulations for the measured cabin noise of a passenger ship and the measured time-varying engine booming noise of a passenger vehicle.

  • PDF

Analysis of the railway noise prediction result using Schall03 in noise mapping (소음지도 작성 시의 Schall03에 의한 철도소음 예측결과 분석)

  • Koh, Hyoin;Jang, Jinwon;Jang, Seungho;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.25 no.3
    • /
    • pp.175-189
    • /
    • 2016
  • The guideline for railway noise mapping is notificated in the administration law for noise/vibration which is announced by the ministry of environment, Korea. Here input parameters for the railway sound sources are proposed for each prediction models. In case of the application of the vehicle characteristics it is suggested to choose "0(%)" for the disc brake parameter. However new trains have been in revenue service since the announcement of the guideline, an investigation of the effect of the input parameters of the foreign railway prediction models on the prediction results of korean railway systems are needed. In this paper the sound prediction results are analyzed with a focus on the input parameters such as disc brake percentage, rail roughness, rail joints. Schall03 is used for the railway noise prediction which has been using most frequently in Korea. The results are shown and discussed.

On the speaker's position estimation using TDOA algorithm in vehicle environments (자동차 환경에서 TDOA를 이용한 화자위치추정 방법)

  • Lee, Sang-Hun;Choi, Hong-Sub
    • Journal of Digital Contents Society
    • /
    • v.17 no.2
    • /
    • pp.71-79
    • /
    • 2016
  • This study is intended to compare the performances of sound source localization methods used for stable automobile control by improving voice recognition rate in automobile environment and suggest how to improve their performances. Generally, sound source location estimation methods employ the TDOA algorithm, and there are two ways for it; one is to use a cross correlation function in the time domain, and the other is GCC-PHAT calculated in the frequency domain. Among these ways, GCC-PHAT is known to have stronger characteristics against echo and noise than the cross correlation function. This study compared the performances of the two methods above in automobile environment full of echo and vibration noise and suggested the use of a median filter additionally. We found that median filter helps both estimation methods have good performances and variance values to be decreased. According to the experimental results, there is almost no difference in the two methods' performances in the experiment using voice; however, using the signal of a song, GCC-PHAT is 10% more excellent than the cross correlation function in terms of the recognition rate. Also, when the median filter was added, the cross correlation function's recognition rate could be improved up to 11%. And in regarding to variance values, both methods showed stable performances.

Design of Brushless Permanent Machine with Skewed Stator for Electrical Power Steering System (전동 조향 장치용 브러쉬리스 영구자석 전동기의 스테이터 스큐 설계)

  • Lee, Choong-Sung;Jung, Kyung-Tae;Hong, Jung-Pyo;Kim, Hae-Joong;Kim, Young-Kyun
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.6
    • /
    • pp.189-197
    • /
    • 2015
  • As enforced the regulation of fuel efficiency, the electrification of automotive components in internal combustion vehicle has been applied instead of hydraulic pressure. A typical example of such parts is the EPS (electric power steering), and it is applied to most automotive at present. In electric power steering system, the core component is motor. The reduction of cogging torque and torque ripple is required to improve steering feeling and reduce NVH (Noise Vibration Harshness) in EPS. Generally the skewed design of stator or rotor is applied in order to reduce cogging torque and torque ripple. This paper propose the design and analysis methodology of Brusheless PMSM (Permanent Magnet Synchronous Motor) which is applied to skewed stator. The proposed methodology is as follows: First Intial Design PMSM with skewed stator for EPS, Second Optimal design using RSM (Response surface method), Third Performance Analysis such as Phase Back EMF, Inductance, Load torque using FEA (Finite Element Method). Finally, the reliability of proposed design methodology will be verified through the experiments of prototype sample.

Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle (이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어)

  • Chang, Yu-Shin;Keh, Joong-Eup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.64-69
    • /
    • 2007
  • Motion control of the system is a position control of motor. Motion control of an uncertain robot system is considered as one of the most important and fundamental research directions in the robotics. Some distinguished works using linear control, adaptive control, robust control strategies based on computed torque methodology have been reported. However, it is generally recognized within the control community that these strategies suffer from the following problems : the exact robot dynamics are needed and hard to implement, the adaptive control cannot guarantee the performance during the transient period for adaptation under the variation, the robust control algorithms such as the sliding mode control need information on the bounds of the possible uncertainty and disturbance. And it produces a large control input as well. In this dissertation, a motion control for the unmanned intelligent robot system using disturbance observer is studied. This system is affected with an impact vibration disturbance. This paper describes a stable motion control of the system with the consideration of external disturbance. To obtain the stable motion independently against the external disturbance, the disturbance rejection is strongly required. To address the above issue, this paper presents a Disturbance OBserver(DOB) control algorithm. The validity of the suggested DOB robust control scheme is confirmed by several computer simulation results. And the experiments with a motor system is performed to give the validity of applicability in the industrial field. This results make the easier implementation of the controller possible in the field.

Reduction of Chattering Error of Reed Switch Sensor for Remote Measurement of Water Flow Meter (리드 스위치 센서를 이용한 원격 검침용 상수도 계량기에서 채터링 오차 감소 방안 연구)

  • Ayurzana, Odgerel;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.42-47
    • /
    • 2007
  • To reduce the chattering errors of reed switch sensors in the automatic remote measurement of water meter a reed switch sensor was analyzed and improved. The operation of reed switch sensors can be described as a mechanical contact switch by approximation of permanent magnet piece to generate an electrical pulse. The reed switch sensors are used mostly in measurement application to detect the rotational or translational displacement. To apply for water flow measurement devices, the reed switch sensors should keep high reliability. They are applied for the electronic digital type of water flow meters. The reed switch sensor is just mounted simply on the conventional mechanical type flow meter. A small magnet is attached on a pointer of the water meter counter rotor. Inside the reed sensor two steel leaf springs make mechanical contact and apart repeatedly as rotation of flow meter counter. The counting electrical contact pulses can be converted as the water flow amount. The MCU sends the digital flow rate data to the server using the wireless communication network. But the digital data is occurred difference or won by chattering noise. The reed switch sensor contains chattering error by it self at the force equivalent position. The vibrations such as passing vehicle near to the switch sensor installed location causes chattering. In order to reduce chattering error, most system uses just software methods, for example using filter algorithm and also statistical calibration methods. The chattering errors were reduced by changing leaf spring structure using mechanical characteristics.

Serviceability Assessment of a K-AGT Test Bed Bridge Using FBG Sensors (광섬유 센서를 이용한 경량전철 교량의 사용성 평가)

  • Kang, Dong-Hoon;Chung, Won-Seok;Kim, Hyun-Min;Yeo, In-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2007
  • Among many types of light rail transits (LRT), the rubber-tired automated guide-way transit (AGT) is prevalent in many countries due to its advantages such as good acceleration/deceleration performance, high climb capacity, and reduction of noise and vibration. However, AGT is generally powered by high-voltage electric power feeding system and it may cause electromagnetic interference (EMI) to measurement sensors. The fiber optic sensor system is free from EMI and has been successfully applied in many applications of civil engineering. Especially, fiber Bragg grating (FBG) sensors are the most widely used because of their excellent multiplexing capabilities. This paper investigates a prestressed concrete girder bridge in the Korean AGT test track using FBG based sensors to monitor the dynamic response at various vehicle speeds. The serviceability requirements provided in the specification are also compared against the measured results. The results show that the measured data from FBG based sensors are free from EMI though electric sensors are not, especially in the case of electric strain gauge. It is expected that the FBG sensing system can be effectively applied to the LRT railway bridges that suffered from EMI.