• Title/Summary/Keyword: vehicle structure and safety

Search Result 273, Processing Time 0.032 seconds

The Study on Effect of Collision Safety by Corrosion of Body Structure (차체구조물의 부식이 충돌안전도에 미치는 영향에 관한 연구)

  • 박인송;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.141-148
    • /
    • 2002
  • Repair were made for front pillar, center pillar and side-step panel for lightweight vehicles with head-on and 40% off-set collision of 15 km/h in a RCAR standard. The salt dilution was sprayed and the compression tests were performed for vehicles with and without anti-corrosional treatment after repair. After 764 hours of salt-dilt sprayed test without using anti-corrosion, the mean penetration depth fur corrosion was shown to be 58% of the thickness. The resulyed decrease in bending stiffness by 10∼20% can cause reduction of the residual life and crash-absorption capability for damaged vehicles. The corrosoin safety tests showed that the anti-corrosional treatment should be made to improve the safety characteristics for a or damaged car.

The Concept Design and Structural Strength Analysis for Double-Deck Train Carbody using Alluminum Extruded Panels (알루미늄 압출재를 적용한 2층 열차 차체의 기초설계 및 구조강도해석)

  • 황원주;김형진;강부병;허현무
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.364-369
    • /
    • 2002
  • The purpose of this paper is to introduce the concept design and the structural strength of the double-deck rolling stock vehicle. Aluminum is very useful material for the carbody structure due to its characteristic of light weight. Large alumillum extrusion profiles(panels) have toe of merits such as easy production of complicated shapes, reduction of welding and cutting lines, and cutting down the labor cost. AED type is being applied to the standard EMUs and the EMUs Kwangju subway in Korea. Light material recommended the double-deck rolling stock vehicle because the center of gravity of the train is higher and its weight is heavier than those of the normal vehicle. So we applied the technology of the large aluminum extrusion profiles(panels) to the double-deck vehicle. We performed the structural strength analysis and examined its safety.

  • PDF

CONSTRUCTION OF SUBWAY TONNEL BENEATH EXISTING VEHICLE UNDERPASS

  • Kim, In-Kuin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1990.10a
    • /
    • pp.25-34
    • /
    • 1990
  • For the construction of twin single track subway tunnels by NATM within close proximity of existing vehicle underpass in the highly congested area of downtown Seoul, finite element analyses were performed to evaluate the ground responses during tunnelling and also the stability and safety of the underpass structure and subway tunnels. Results of the analyses indicated the need to improve the soil beneath the underpass, and pre-grouting was carried out prior to the tunnel excavation. During tunnel construction field measurement program was implemented to confirm the results of anslyses and to control the tunnel construction procedures, thus ensuring stability of the existing structres.

  • PDF

Structure and Strength Analysis of Yoke for Railway Vehicles (철도차량용 완충기 요크 구조강도 평가)

  • Woo, Chang-Su;Park, Hyun-Sung;Park, Dong-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1634-1641
    • /
    • 2008
  • The shock absorbing equipment for railway rolling is one of the most important components. It's effects on the safety of both passengers and vehicle itself and reduce shock, vibration and noise. The shock absorber equipment is mainly consisted of the yoke, plate and rubber draft gear. The objective of the this paper is to evaluation of structure and strength for the yoke in railway vehicles. Structure and strength analysis has been performed by use of finite element method and experimental stress analysis.

  • PDF

Impact Collapse Behavior of Hybrid Circular Thin-walled Member by Stacking Condition (적층조건에 따른 혼성 원형 박육부재의 충격압궤거동)

  • Lee, Kil-Sung;Park, Eu-Ddeum;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.235-240
    • /
    • 2010
  • The recent trend of vehicle design aims at crash safety and environmentally-friendly aspect. For the crash safety aspect, energy absorbing members should be absorbed with collision energy sufficiently. But vehicle structure must be light weight for the environmentally-friendly aspect, in order to improve fuel efficiency and to reduce tail gas emission. Therefore, the light weight of vehicle must be achieved in a status of securing safety of crash. An aluminum or CFRP (Carbon Fiber Reinforced Plastics) is representative one among the light-weight materials. In this study, impact collapse behavior of circular hybrid thin-walled member is evaluated. The hybrid members are manufactured by wrapping CFRP prepreg sheets outside the aluminum circular members in the autoclave. Because the CFRP is an anisotropic material whose mechanical properties change with its stacking condition, special attention is given to the effects of the stacking condition on the collapse behavior evaluation of the hybrid thin-walled member. Collapse mode and energy absorption capability of the hybrid thin-walled member are analyzed with change of the fiber orientation angle and interface number.

Structural Integrity Evaluation for Crane Bracket of Armored Recovery Vehicle (구난장갑차 크레인 브래킷에 대한 구조건전성 평가)

  • Jung, Jae-Woong;Jung, Un-Hwa;Kim, Cheon-Soo;Yu, Young-Soo;Park, Kyung-Chul;Park, Ki-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.653-658
    • /
    • 2013
  • For towing the new type armored vehicle and maintaining the close support, the armored recovery vehicle(ARV) with winch and crane has been developed. In case of crane, it is mainly used to salvage heavy objects by rotational and vertical motion. Especially, the crane bracket is very important parts due to fixing the ARV's body and rotary joint and preventing the force rotation of crane. Therefore, the crane bracket needs to have an enough strength to endure the high load and it is very important to analyze the stress distribution under loads. In the present work, the experimental and analytical investigation on structural integrity evaluation of crane bracket were carried out. The simulation of three-dimensional finite element method(FEM) was compared with experimental datum. From the numerical results, the FEM simulations corresponded well with th experimental results and the structural safety was confirmed by safety factor.

The Way for improvement of facility to strengthen accessibility of the site for fire department (소방대의 현장접근성 강화를 위한 설비의 개선방안)

  • Oh, Taek-Hum;Sung, Ja-Man;Pak, Chan-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.3
    • /
    • pp.67-75
    • /
    • 2012
  • Because recently(July 14, 2011) fire occurred in the engine room of a moving taxi under Namsan Tunnel 1, 51 vehicles' driver and more than 250 passengers in the road tunnel were urgently evacuated with abandoned vehicles. Vehicle fires in Namsan Tunnel that day, Sufferers struggled to escape quickly difficult to escape the two-way by abandoned vehicles on the road and to fear many casualties by using vehicle fuel and combustible interior and the driver who is ignorant of vehicle accident continuous entered in the road tunnel had accessibility the site of fire department was more difficult. In this study, It is to investigate structure and basic materials, such as fire extinguish equipment and facilities for damage prevention and to analyze the problems and to plan improvement method of fire extinguish equipment, facilities for damage prevention and transportation facilities(Large traffic signs, Breaker, etc.) on the Namsan Tunnel that in the long-term plan is prepared to strengthen for accessibility of the site of fire department in case of Vehicle's fire.

Photogrammetric Crack Detection Method in Building using Unmanned Aerial Vehicle (사진측량법을 활용한 무인비행체의 건축물 균열도 작성 기법)

  • Jeong, Dong-Min;Lee, Jong-Hoon;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.1
    • /
    • pp.11-19
    • /
    • 2019
  • Recently, with the development of the fourth industrial revolution that has been achieved through the fusion of information and communication technology (ICT), the technologies of AI, IOT, BIG-DATA, it is increasing utilization rate by industry and research and development of application technologies are being actively carried out. Especially, in the case of unmanned aerial vehicles, the construction market is expected to be one of the most commercialized areas in the world for the next decade. However, research on utilization of unmanned aerial vehicles in the construction field in Korea is insufficient. In this study, We have developed a quantitative building inspection method using the unmanned aerial vehicle and presented the protocol for it. The proposed protocol was verified by applying it to existing old buildings, and defect information could be quantified by calculating length, width, and area for each defect. Through this technical research, the final goal is to contribute to the development of safety diagnosis technology using unmanned aerial vehicle and risk assessment technology of buildings in case of disaster such as earthquake.

The Study on the Vehicle-Mounted Radar System of Structural Design Under Environment Conditions (차량 탑재형 레이더 시스템의 구조물에 대한 연구)

  • Jung, Hwa Young;Lee, Keon Min;Kang, Kwang Hee;Kang, Jong Goo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.797-804
    • /
    • 2016
  • The vehicle-mounted radar system (VMRS) including its electronic parts must be designed so that its performance is maintained under varying environmental conditions. The important aspects are typically weight and safety. Since many rotating VMRSs have been developed, discussion about the vibration and shock requirements for the transportation conditions has occurred: in addition, the dynamic unpaved, paved, and off-road effects have been emphasized with respect to lightweight designs. A lightweight-design VMRS should be capable of operating stably under the wind condition with the support of the vehicle structure. In this paper, a structural analysis regarding the support of the VMRS is performed, whereby the real-load conditions for three types of road and pressure were employed in terms of the wind condition. The structural analysis for the safety of the VMRS is performed, and the structural-integrity analytical processes of the VMRS are presented for different load conditions.

Development of System Analysis for the Application of MDO to Crashworthiness (자동차 충돌문제에 MDO를 적용하기 위한 시스템 해석 방법 개발)

  • 신문균;김창희;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.210-218
    • /
    • 2003
  • MDO (multidisciplinary design optimization) technology has been proposed and applied to solve large and complex optimization problems where multiple disciplinaries are involved. In this research. an MDO problem is defined for automobile design which has crashworthiness analyses. Crash model which are consisted of airbag, belt integrated seat (BIS), energy absorbing steering system .and safety belt is selected as a practical example for MDO application to vehicle system. Through disciplinary analysis, vehicle system is decomposed into structure subspace and occupant subspace, and coupling variables are identified. Before subspace optimization, values of coupling variables at given design point must be determined with system analysis. The system analysis in MDO is very important in that the coupling between disciplines can be temporary disconnected through the system analysis. As a result of system analysis, subspace optimizations are independently conducted. However, in vehicle crash, system analysis methods such as Newton method and fixed-point iteration can not be applied to one. Therefore, new system analysis algorithm is developed to apply to crashworthiness. It is conducted for system analysis to determine values of coupling variables. MDO algorithm which is applied to vehicle crash is MDOIS (Multidisciplinary Design Optimization Based on Independent Subspaces). Then, structure and occupant subspaces are independently optimized by using MDOIS.