• Title/Summary/Keyword: vehicle loads

Search Result 483, Processing Time 0.036 seconds

A Study on Mobility Loads and the Deployment Patterns for the Development of Smart Place Load Model (스마트 플레이스 부하모델 개발을 위한 이동성 부하 및 보급패턴에 관한 연구)

  • Hwang, Sung-Wook;Song, Il-Keun;Kim, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.217-223
    • /
    • 2014
  • Recently, various researches and projects about electric vehicles are in progress vigorously and continuously and it is expected to penetrate rapidly with the next a few years. This deployment will cause the change of load composition rate affecting on power system planning and operations. Therefore, a new load model should be developed integrating with electric vehicle loads. In this paper, the load composition rate of residential sectors is analyzed considering the deployment of this mobility load such as electric vehicles and a new diffusion model is proposed based on the classification of the replacement patterns. Additionally, electric vehicle charging loads are basically modeled by some individual load experiments to develop new load models for smart place and some new conceptual power systems such as micro grids.

Experience with an On-board Weighing System Solution for Heavy Vehicles

  • Radoicic, Goran;Jovanovic, Miomir;Arsic, Miodrag
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.787-797
    • /
    • 2016
  • Mining, construction, and other special vehicles for heavy use are designed to work under high-performance and off-road working conditions. The driving and executive mechanisms of the support structures and superstructures of these vehicles frequently operate under high loads. Such high loads place the equipment under constant risk of an accident and can jeopardize the dynamic stability of the machinery. An experimental investigation was conducted on a refuse collection vehicle. The aim of this research was to determine the working conditions of a real vehicle: the kinematics of the waste container, that is, a hydraulic rotate drum for waste collection; the dynamics of the load manipulator (superstructure); the vibrations of the vehicle mass; and the strain (stress) of the elements responsible for the supporting structure. For an examination of the force (weight) on the rear axle of a heavy vehicle, caused by its own weight and additional load, a universal measurement system is proposed. As a result of this investigation, we propose an alternative system for continuous vehicle weighing during waste collection while in motion, that is, an on-board weighing system, and provide suggestions for measuring equipment designs.

A Study on Ergonomics Design of Wheelbarrow for Melon Farm on Protected Horticulture (시설참외의 수확운반차량에 대한 작업분석 및 인간공학적 설계에 관한 연구)

  • Lee, S.S.;Kim, Y.H.;Choi, A.R.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.3
    • /
    • pp.157-166
    • /
    • 2008
  • Protected horticulture is labor-intensive. It necessitates great amount of labor in many tasks including grafting, pollination and harvesting. Particularly, carrying crops involves the most intensive labor which leads to a high risk of musculoskeletal disorder. Thus, this study aims at developing an ergonomic vehicle to reduce this intensity of labor and ergonomic evaluation by applying the newly developed vehicles to REBA. 5 healthy male subjects with no records of any musculoskeletal disorder were participated in this study. The experimental units were divided into three categories: lifting, lowering and pushing tasks. The results showed that the developed vehicle received less loads in group B (arms and wrists) than in group A (trunk, neck and legs). Especially, the developed vehicle scored $1.0{\sim}4.4$ in group C on REBA while the conventional wheelbarrow got $3.0{\sim}7.6$, regardless of working postures. In conclusion, the developed ergonomic vehicle provided less loads for human bodies compared to the conventional one.

The development of European railway vehicle body through analysis and test (해석 및 시험 평가를 통한 유럽형 전동차 차체 개발)

  • Kim Jeong-Hyun;Kim Sung-Jong;Park Geun-Soo;Park Hung-Soon
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.694-699
    • /
    • 2003
  • Rotem Company has designed and manufactured a railway vehicle body according to the European standard EN 12663, which applies to all railway vehicles within the EU(European Union) and EFTA(European Free Trade Association) territories. EN 12663 specifies the loads vehicle bodies shall be capable of withstanding, identifies how material data shall be used and presents the principles to be used for design verification by analysis and test. The structural design of railway vehicle bodies depends on the loads they are subjected to and the characteristics of the materials they are manufactured from. However, the structural requirements of EN 12663 are very different from those of existing Korean and Japanese regulations and standards. Therefore, in order to fulfill the structural requirements, Rotem Company has carried out Finite Element Analysis (FEA) and has performed load tests on the vehicle body according to EN 12663. This research contains the results obtained by the analysis and the load tests. The analysis is carried out using I-DEAS Master Series 8 and specially designed test jigs and equipment are used for the load tests.

  • PDF

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

The Effect of KTX Vehicle Size Adjustment on High-Speed Railway Bridge Vibration : Numerical Study (수치해석을 통한 KTX 객차 길이 조정이 고속철도교량의 동적거동 특성에 미치는 영향 연구)

  • Shin, Jeong-Ryol;Kim, Hyun-Min;Sohn, Hoon;Yun, Chung-Bang
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.854-863
    • /
    • 2008
  • A high attention has been paid on the running safety of Korean high-speed train, KTX. In running of KTX on bridge, the running unsafety problem issued from a resonance phenomenon of bridge, which was usually caused by the periodic wheel-loads of train. Therefore, many researches on this running safety of train on bridge have been conducted by domestic or foreign researchers. In this paper, for PSC box-girder bridge which is the representative high-speed railway bridge type, some numerical analyses on the dynamic characteristics of bridge with the non-periodic wheel-loads through vehicle size adjustment were performed. These numerical analyses shows the fact that the resonance phenomenon on bridge was mitigated through vehicle size adjustment. Additional numerical analyses on the vibration reduction of bridge in accordance with the location of size-adjusted vehicle were performed. From these results, it was represented that the adjustment of vehicle size has an effect on the running safety of train as well as the ride comfort.

  • PDF

Double 𝑙1 regularization for moving force identification using response spectrum-based weighted dictionary

  • Yuandong Lei;Bohao Xu;Ling Yu
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.227-238
    • /
    • 2024
  • Sparse regularization methods have proven effective in addressing the ill-posed equations encountered in moving force identification (MFI). However, the complexity of vehicle loads is often ignored in existing studies aiming at enhancing MFI accuracy. To tackle this issue, a double 𝑙1 regularization method is proposed for MFI based on a response spectrum-based weighted dictionary in this study. Firstly, the relationship between vehicle-induced responses and moving vehicle loads (MVL) is established. The structural responses are then expanded in the frequency domain to obtain the prior knowledge related to MVL and to further construct a response spectrum-based weighted dictionary for MFI with a higher accuracy. Secondly, with the utilization of this weighted dictionary, a double 𝑙1 regularization framework is presented for identifying the static and dynamic components of MVL by the alternating direction method of multipliers (ADMM) method successively. To assess the performance of the proposed method, two different types of MVL, such as composed of trigonometric functions and driven from a 1/4 bridge-vehicle model, are adopted to conduct numerical simulations. Furthermore, a series of MFI experimental verifications are carried out in laboratory. The results shows that the proposed method's higher accuracy and strong robustness to noises compared with other traditional regularization methods.

COMS Shock Test Assessment by Using the Extrapolation Method (외삽법을 이용한 천리안위성 충격시험 분석)

  • Lee, Ho-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.439-445
    • /
    • 2012
  • The COMS(Communication, Ocean, and Meteorological Satellite) is subjected to shock loads when the stage or fairing of a launch vehicle is separated and the satellite is separated from the launch vehicle during the launch vehicle flight. And, after the satellite is separated from the launcher, the COMS is subjected to shock loads when the solar array is deployed, Ka-Band communication antenna is deployed, and meteorological imager radiator cover is released. In order to validate the satellite safety against these shock loads on ground, shock tests were performed. In this paper, the shock tests performed in the course of the COMS development are described, and the method to assess the test result is presented with an example of Geostationary Ocean Color Imager(GOCI). In Ariane-5 launch vehicle, the clampband release shock for satellite separation is lower than the fairing or stage separation. In this paper, the extrapolation method to take into account the maximum shock load from the launch vehicle by using the satellite separation shock test result is also introduced.

Study on Vibration Fatigue Analysis of Automotive Battery Supporter (자동차 배터리 지지 구조의 진동 피로 해석에 대한 연구)

  • Ah, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.22-27
    • /
    • 2019
  • In this paper, the vibration load and analysis results for automotive battery supporter were performed to provide efficient vibration tolerance performance prediction methods for single-product vibration tolerance testing, and the major influencing factors and considerations for setting up single-unit vibration tolerance tests were reviewed. A common applicable standard load was applied to efficiently predict the performance of single-unit vibrations through the frequency response analysis technique. The results similar to test results can be predicted by checking vulnerable parts of the vehicle components for vibration loads and applying scale factor to standard loads. In addition, it was confirmed that the test conditions with a frequency generating the same durability severity as the endurance test are needed for accurate prediction of the durability of the single-unit vibration tolerance test conditions, and the acceleration and frequency with the conditions that there is no significant nonlinear phenomena in the vibration system are established during the single-unit vibration tolerance test conditions.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.