Transactions of the Korean Society of Automotive Engineers
/
v.10
no.4
/
pp.85-92
/
2002
To investigate the safety of the in-use vehicles emission against the tail-pipe emission regulation, in-use vehicles emission trend according to vehicle mileage should be known. But it is impossible to collect all vehicles emission data In order to know that. Therefore, it is necessary to establish a statistically meaningful inference method that can be used generally to estimate in-use vehicles emissions distribution according to the vehicle mileage with relatively less in-use vehicles emission data. To do this, a linear regression model that solved the problems of data normality and common variance of error was studied. As a way that can secure the data normality, In(emission) instead of emission itself was used as a sampled data. And a reciprocal of mileage was suggested as a factor to secure common variance of error. As an example, 36 data of FTP-75 test were handled in this study. As a result, using average value and standard deviation at each mileage which were inferred from a linear regression model, probability density distribution and cumulative distribution of emissions according to the vehicle mileage were obtained and it was possible to predict the deterioration factor through full useful life mileage and also possible to decide whether those in-use vehicles will meet the tail-pipe emission regulations or not.
As unmanned aerial vehicle (UAV) technology grew in popularity over the years, it was introduced for air quality monitoring. This can easily be used to estimate the sidewalk emission concentration by calculating road traffic emission factors of different vehicle types. These calculations require a simulation of the spread of pollutants from one or more sources given for estimation. For this purpose, a Gaussian plume dispersion model was developed based on the US EPA Motor Vehicle Emissions Simulator (MOVES), which provides an accurate estimate of fuel consumption and pollutant emissions from vehicles under a wide range of user-defined conditions. This paper describes a methodology for estimating emission concentration on the sidewalk emitted by different types of vehicles. This line source considers vehicle parameters, wind speed and direction, and pollutant concentration using a UAV equipped with a monocular camera. All were sampled over an hourly interval. In this article, the YOLOv5 deep learning model is developed, vehicle tracking is used through Deep SORT (Simple Online and Realtime Tracking), vehicle localization using a homography transformation matrix to locate each vehicle and calculate the parameters of speed and acceleration, and ultimately a Gaussian plume dispersion model was developed to estimate the CO, NOx concentrations at a sidewalk point. The results demonstrate that these estimated pollutants values are good to give a fast and reasonable indication for any near road receptor point using a cheap UAV without installing air monitoring stations along the road.
Traffic represents one of the largest sources of primary air pollutants in urban area. As a consequence, numerous abatement strategies are being pursued to decrease the ambient concentration of pollutants. A characteristics of most of the these strategies is a requirement for accurate data on both the quantity and spatial distribution of emissions to air in the form of an atmospheric emission inventory database. In the case of traffic pollution, such an inventory must be compiled using activity statistics and emission factors for vehicle types. The majority of inventories are compiled using passive data from either surveys or transportation models and by their very nature tend to be out-of-date by the time they are compiled. The study of current trends is towards integrating urban traffic control systems and assessments of the environmental effects of motor vehicles. In this study, a model of vehicle emission calculation by using real-time traffic data was studied. Traffic data, which are required on a street-by-street basis, is obtained from induction loops of traffic control system. It is possible that characteristics of hourly air pollutants emission rates is obtained from hourly traffic volume and speed. An emission rates model is allocated with a high resolution space by using geographic information system (GIS). Vehicle emission model was developed with a high resolution spatial, gridded and hourly emission rates.
Journal of Korean Society for Atmospheric Environment
/
v.9
no.1
/
pp.69-77
/
1993
Exhaust emissions are calculated as a product of the emission factor and the vehicle kilometer traveled(VKT). The emission factor is a function of several parameters such as vehicle model year, vehicle mileage, traffic conditions, etc. The representative driving cycles classified as ten different types of an average vehicle speed were selected by analyzing passenger car driving patterns in Seoul. 51 vehicles were sampled and analyzed by types of vehicles, fuels used, model years and vehicle mileages also, exhaust emissions of them were measured by chassis dynamometer. Regression equations between average vehicle speeds and exhaust emissions are made for the estimation of emission factors at different vehicle speeds. Annual emission rates of air pollutants from motor vehicles in Korea were 1116$\times10^3 ton, 149\times10^3 ton, 413\times10^3 ton and 67\times10^3$ ton for CO, HC, NOx and particulats, respetively in 1990. It was found that 56% of CO and 49% of HC were originated from passenger cars and taxis, in addition, 87% of NOx and 100% of particulates were from buses and trucks using diesel fuels.
On-road source emissions are major air pollutants and have been associated with serious health effects in Seoul metropolis. Thus, it is of fundamental importance to have an accurate assessment of vehicle emissions in order to implement an effective air quality management policy. As a result, there is a need to overview vehicle emission characteristics of air pollutants. This article discusses vehicle exhaust sampling and chemical analysis, emission characteristics of air pollutants, and emission regulations from passenger cars. The vehicle exhaust sampling and chemical analysis methods were described in particulate matter and gaseous compounds. In this article, chassis dynamometer, measurement instrumentation for nano-particulate matter and carbon compounds analysis device were described. For the gasoline and diesel vehicles, the effective parameters of emissions were average vehicle speed, vehicle mileage and model year. The particle number emissions for diesel nano-particles were sensitive to the sampling conditions. Also, the particle number emissions with a diesel particle filter (DPF) largely reduced rather than those without it. This article also describes different emission characteristics of air pollutants according to biodiesel or bioethanol mixing ratio. The Korean emission standards for passenger cars were compared with those of the US and EU. Finally, the objective is to give an overview of relevant background information on emission characteristics of air pollutants from passenger cars in Korea.
Journal of Korean Society for Atmospheric Environment
/
v.19
no.4
/
pp.387-396
/
2003
A field study was conducted during the summer time of 2002 to determine compositions of volatile organic compounds (VOCs) emitted from vehicles and to develop source emission profiles that is applied to CMB model to estimate the source contribution of certain area. Source emission profile is widely used for the estimation of source contribution by the chemical mass balance model and have to be developed applicable for the target area of estimation. This study was aimed to develop source emission profile and estimation of source contribution of VOCs after application of the chemical mass balance (CMB) receptor model. After considering the emission inventory and other research results for the VOCs in Seoul, Korea, the sources like vehicle emission (tunnel), gas station (gasoline, diesel), solvent usage (painting operation, dry cleaning, graphic art), and gas fuels were selected for the major VOCs sources. Furthermore, ambient air samples were simultaneously collected from 09:00 to 11:00 for four days at eight different official air quality monitoring sites as receptors in Seoul during summer of 2001. Source samples were collected by canisters, and then about seventy volatile organic compounds were analyzed by gas chromatography with flame ionization detector (GC/FID). Based on both the developed source profiles and the database of the receptors, CMB model was intensively applied to estimate mass contribution of VOCs sources. Examining the source profile from the vehicle, the portion of alkanes of VOCs was highest, and then the portion of aromatics such toluene, m/p-xylene were followed. In case of gas fuel. they have their own components; the content of butane, propane, ethane was higher than any other component according to the fuel usage. The average of the source apportionment on VOCs for 8 sites showed that the major sources were vehicle emission and gas fuels. The vehicle emission source was revealed as having the highest contribution with an average of 49.6%, and followed by solvent with 21.3%, gas fuel with 16.1%, gasoline with 13.1%.
Journal of Korean Society for Atmospheric Environment
/
v.10
no.3
/
pp.197-202
/
1994
The research described in this paper is conducted to estimate the short-term concentrations of nonreactive pollutants such as CO and TSP from vehicle emissions near Kyungbu Highway. An emphasis is placed on the development of a model for a hourly traffic volume for each vehicle type, which is based on real traffic data. By using the model and the calculated emission factor due to vehicle speed for each vehicle type, the emission rate of CO and TSP for each traffic line is computed. The hourly emission rate and meteorological data are used to simulate by HIWAY-2 for the distance of 5m and 10m from the downwind edge of Kyungbu Highway located in relatively uncomplicated terrain.
There are lots of variations on speed, acceleration and engine power during vehicle driving. It is well known that Green House Gas emissions by these dynamic driving properties are not precisely estimated by the average speed based emission estimation model which has been currently used in Korea. MOVES are selected as an appropriate transferable model among Micro-level emission estimation models. Based on MOVES, a novel emission estimation model can be used in Korea is developed. In this model, MOVES concept of emission estimation method and the MOVES method of estimating the Micro-level emission rate map is adopted. The results from the proposed model were compared with those from the average speed based emission model. The comparison results show the estimated base emission maps are good to be applied in Korea, but needed to be adjusted to consider the vehicle size differences between the two countries. Therefore, the factors for calibrating vehicle size difference were calculated and applied to acquired the micro-level emission maps for the Korean standard vehicle types.
Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.
$CO_2$ emission regulation will be prescribed and main issue in automotive industry. Mostly, vehicle's fuel efficiency deeply related to $CO_2$ emission is regulated by qualified driving test cycle by using chassis dynamometer and exhaust gas analyser. But, real driving fuel consumption rate depends so much on the individual usage profile and where it is being driven: city traffic, road conditions. In this study, vehicle model of fuel consumption rate for ICEV and PHEV was developed through co-simulation with CRUISE model and Simulink based on driving control model. The simulation results of fuel consumption rate were analysed with on-road vehicle data and compared with its official level.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.