• Title/Summary/Keyword: vehicle emission

검색결과 705건 처리시간 0.029초

하이브리드 전기자동차용 배터리 ECU 개발 (Development of the Battery ECU for Hybrid Electric Vehicle)

  • 남종하;최진흥;김승종;김재웅
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.740-744
    • /
    • 2003
  • The development of electric vehicle has been accelerated by the recent 'California Initiative' which has required increasing proportions of new vehicle in Los Angeles area to be ZEV(Zero Emission Vehicles) But, because skill of battery is feeble, ZEV regulation was postponed but that is by CO2 restriction and environmental pollution problem the latest because do development require. In the electric vehicle and hybrid electric vehicle, the battery ECU(Battery Management System, BMS) is very important and an essential equipment. The accurate state of charge(SOC) is required for the battery for hybrid electric vehicles. This paper proposes SOC algorithm for the HEV based on the terminal voltage. Also, designed and analyzed battery ECU to apply on HEV.

  • PDF

차량배출가스로 인한 일반국도 NOx 대기오염 추정 모형 (A Model for Estimating NOx Emission Concentrations on National Road)

  • 오주삼;김병관
    • 한국도로학회논문집
    • /
    • 제13권3호
    • /
    • pp.121-129
    • /
    • 2011
  • 본 연구는 이상적인 실험환경이 아닌 실제 일반국도(국도 3호선)를 분석 대상으로 실시간으로 수집된 교통자료와 NOx 대기 오염 측정 자료를 이용하여 이들 사이의 관계를 규명하고 그 특성을 분석하고자 한다. 또한 이러한 관계를 이용하여 현장에서 실제 적용이 가능하며 대기오염도를 모니터링을 할 수 있는 일반국도의 차량배출가스로 인한 NOx 대기오염도 추정 모형을 개발하고자 한다. 모형의 구축에 있어서 측정 장비 및 기타 변동요인으로 인한 특이점을 제거하기 위하여 로버스트 분석을 이용하였고 바람의 영향을 고려하지 않은 경우와 바람의 영향을 고려한 경우에 대해서 모형을 구축하였다. 본 연구의 결과는 교통정책 시행에 따른 차량배출가스로 인한 대기오염 현황을 파악하고 교통정책의 환경적 효과를 평가하는데 활용될 수 있을 것이다.

직렬형 플러그인 하이브리드 전기 버스의 엔진 구동 전략에 따른 시뮬레이션 기반 연비 분석 (Analysis of Fuel Economy for Series Plug-in Hybrid Electric Bus according to Engine Operation Strategy Based on Simulation)

  • 김진성;이치범;박영일
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.102-107
    • /
    • 2014
  • Because of high oil prices and emission gas problems, many governments tighten regulation of fuel economy and emission gas. For Passenger car, there are many researches for plug-in hybrid electric vehicles and they are being manufactured. On the other hand, there are few researches for plug-in hybrid electric bus that is heavy commercial vehicle. In this study, analysis of fuel economy for series plug-in hybrid electric bus according to engine operation strategy based on simulation is conducted. Forward simulator is developed using Autonomie. Engine operation strategies consist on constant engine operation strategy and engine on/off operation strategy. Considering the engine operation strategy, results of vehicle speed, engine operating points and fuel economy are obtained and analyzed. As a result, engine on/off operation strategy has more advantage than constant engine operation strategy in terms of fuel economy.

한국을 포함한 세계 도심지역에서 관측된 나노미세먼지(UFP)의 특성: 발생원, 시·공간적 분포, 건강에 미치는 영향을 중심으로 (Characteristics of Ultrafine Particles in Urban Areas Observed Worldwide and in Korea: Sources and Emissions, Spatial and Temporal Distributions, and Health Effects)

  • 최원식;김재진
    • 대기
    • /
    • 제28권3호
    • /
    • pp.337-355
    • /
    • 2018
  • Ultrafine particles (< 100 nm in diameter, UFP) are known to be more toxic per unit mass than larger particles and contribute to more than 90% in particle number concentrations in urbanized cities but much less in mass. The major sources of UFP are vehicle emissions in urban areas. Due to their tiny size (the sizes of UFP from vehicle emissions range from 10 to 60 nm depending on engine and fuel types), inhaled UFP can reach the deepest area of respiratory track (e.g., pulmonary alveoli) as well as all of the body via lymph and blood circulation causing various adverse health effects. This article reviews the sources and emission factors of UFP, temporal and spatial distributions in urban areas and their health effects reported by toxicological and epidemiological studies. We also compared the levels of UFP concentrations measured in other countries with those in Korean cities to evaluate the public exposure to UFP in Korea. Ultimately, we expect this study can contribute to developing the risk assessment techniques for public exposure to UFP in the urbanized cities in Korea.

승용 및 하이브리드 자동차 온실가스 배출특성 연구 (A study on Greenhouse gas Emission Characteristics of Conventional Passenger and Hybrid Electric Vehicles)

  • 임윤성;문선희;정택호;이종태;동종인
    • 한국분무공학회지
    • /
    • 제25권1호
    • /
    • pp.34-39
    • /
    • 2020
  • Automotive manufacturers are applying technologies for greenhouse gas reduction such as vehicle weight reduction, engine downsizing, direct injection technology, variable valves and transmission performance improvement to achieve the targets for enhanced greenhouse gas and fuel consumption efficiency. In this paper, compared and analyzed greenhouse emissions according to engine capacity, engine displacement, curb weight and sales volume of hybrid and internal combustion engine passenger vehicles. Hybrid emit 32~39% less greenhouse gas than internal combustion engines through the combined mode test method. Hybrid electric vehicle's curb weight was about 7% heavier on average for the same engine displacement, while greenhouse gas was about 36% lower. It was confirmed that in order to reduce the emission of pollutants of greenhouse gases as well as the air pollutants, it is necessary to expand the supply of eco-friendly vehicles.

자동차 크랭크 軸用 鋼材의 棒對棒 同種材 摩擦熔接의 疲勞强度 特性 및 AE 評價 (Optimization of Bar-to-Bar Similar Friction Welding of Crank Shaft for Motor Vehicle and the Weld Fatigue Strength Properties and its AE Evaluation)

  • 오세규;양형태;김헌경
    • 한국해양공학회지
    • /
    • 제13권2호통권32호
    • /
    • pp.74-82
    • /
    • 1999
  • Nowadays, the crank shaft motor vehicle has become essential as the important component. The machining precision was asked for manufacturing the shaft. They could be unstable in the quality by the conventional are welding. Both in-process quailty control and high reliability of the weld are the major concerns in applying friction wlding to the economical and qualified mass-production. No reliable nondestructive monitoring method is avaliable at present to determine the real-time evaluation of automatic production quality control for bar-to-bar friction welding of the crank shaft of O.D 24mm for motor vehicle. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the cumulative counts of acoustic emission(AE) during plastic deformation periods of the welding and the tensile strength and other properties of the bar-to-bar welded joints of O.D. 24mm shaft as well as the various welding variables, as a new approach which attempts finally to develop real-time quality monitoring system for friction welding, resulting in practical possiblility of real-time quality control more than 100% joint efficiency showing good weld with no micro structural defects.

  • PDF

가솔린과 바이오 에탄올 혼합 연료의 엔진 및 차량 모드 주행시의 입자상 물질 배출 특성 (Particle emission characteristics of gasoline and bio ethanol blend in the engine and vehicle mode test)

  • 고아현;이형민;최관희;박심수;이영재
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3102-3107
    • /
    • 2008
  • This paper was focused on the particulate matter (PM) on the gasoline and bio ethanol. Bio ethanol as a clean fuel is considered one of the alternative fuels that decreased the PM emission from the vehicle. Particle formation in SI engine was depended on the fuel and engine operating condition. In this paper, Particle number concentration behaviors were analyzed by DMS500 (Differential Mobility Spectrometer) and CPC (Condensation Particle Counter) instrument which was recommended by PMP (Particle Measurement Programme). Particle emissions were measured with various engine operating variables such as air excess ratio ($\lambda$), spark timing and intake valve opening (IVO) at part load condition. In vehicle test, the number of particulate matter was analyzed with golden particle measurement system, which was consist of CVS (Constant Volume Sampler), particle number counter and particle number diluter.

  • PDF

경유자동차의 실험실과 실도로 주행시험에 관한 비교 분석 (An analysis of Laboratory and Real Driving Test using Diesel Vehicles)

  • 이광범;용부중
    • 자동차안전학회지
    • /
    • 제12권1호
    • /
    • pp.33-38
    • /
    • 2020
  • Since a diesel vehicle scandal related to the 'A' automobile company was issued in the United States in 2015, many countries have been interested in emission defeat devices. Being embedded in some diesel passenger cars sold in Korea, a defeat device for exhaust gas may have influence on both fuel economy and NOx emissions. In order to examine such effects, we carried out laboratory indoor tests as well as real road driving tests using four models of 'A' automobile company which may employ defeat devices. Those tests were performed observing the test modes of FTP-75, HWFET, and NEDC. Although fuel economy and NOx emissions according to indoor tests comply with the suggested tolerance, the findings in the real road driving tests do not satisfy the tolerance. Along with the results provided in this study, further evaluation may be necessary to investigate the noticeable difference between the indoor and real road tests.

ACTIVATED CARBON CANISTER PERFORMANCE FOR A SPARK IGNITION ENGINE

  • CHOI G. H.;CHOI K. S.;CHUNG Y. J.;KIM I. M.;DIBBLE R. W.;HAN S. B.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.9-15
    • /
    • 2006
  • Prediction of the performance of a carbon canister in vehicle evaporative emission control system has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. Evaporative emissions from gasoline powered vehicles continue to be a major concern. The objective of this paper is to clarity the flow characteristics and other such fundamental data for the canister during loading and purging are needed, and this data will prove valuable in the development of the canister. This paper is to evaluate the relationship between carbon canister condition and engine performance during engine operation, and the effects of evaporative emissions on the engine performance were investigated.

UAV 기반 열적외선 센서를 이용한 태양광 셀의 발열 검출 (The Detection of Heat Emission to Solar Cell using UAV-based Thermal Infrared Sensor)

  • 이근상;이종조
    • 대한공간정보학회지
    • /
    • 제25권1호
    • /
    • pp.71-78
    • /
    • 2017
  • 최근 널리 보급되고 있는 태양광 발전소의 유지관리를 위해 다양한 연구들이 시도되고 있다. 본 연구에서는 unmanned aerial vehicle(UAV)기반 열적외선 센서를 이용하여 태양광 셀의 발열을 분석하는 것으로서 주요 결론은 다음과 같다. 먼저 UAV 기반 RGB 센서를 이용하여 정사영상과 digital surface model(DSM) 자료를 구축하였으며, 이를 통해 태양광 셀의 발열 분석에 필요한 태양광 모듈 레이어를 생성하였다. 또한 태양광 모듈 레이어의 위치정확도를 평가하기 위해 virtual reference service(VRS) 측량을 이용하여 검정점에 대한 수평오차를 분석한 결과, 표준오차가 $dx={\pm}2.4cm$, $dy={\pm}3.2cm$로 높은 위치정확도를 확보할 수 있었다. 그리고 태양광 셀의 발열 실험을 위해 고무패치를 설치한 후 UAV 열적외선 센서를 이용하여 발열이 생기는 고무패치의 위치를 효과적으로 분석할 수 있었다. 또한 고무패치 셀 비율과 UAV 열적외선 센서에 의한 셀 비율의 표준오차는 ${\pm}3.5%$로 나타났으며, 따라서 UAV 기반 열적외선 센서를 이용하여 태양광 셀의 발열을 효과적으로 분석할 수 있었다. 아울러 발열이 생기는 셀이 위치하고 있는 태양광 모듈의 코드를 자동으로 추출함으로서 효과적인 태양광발전소 유지보수가 가능하게 되었다.