• 제목/요약/키워드: vehicle dynamics data

검색결과 175건 처리시간 0.027초

대형 정밀장비 탑재용 트랙터-트레일러형 차량의 주행 동특성 (Driving Dynamic Characteristics of Tractor-Trailer Type Transporter for Large Scale Precision Equipment)

  • 하태완;오상훈
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.687-696
    • /
    • 2019
  • To identify the driving dynamic characteristics of the Tractor-Trailer Type Transporter for mounting a large scale precision equipment, real vehicle driving tests on the 3 inch-bump-space-road were performed. And using general Dynamics Analysis Program - RecurDyn(V8R5), Dynamics M&S were carried out assuming the similar condition with real tests. Then the acceleration data obtained from real tests and M&S were analyzed and compared with each other in the part of root-mean-square-acceleration($g_{rms}$), peak-acceleration($g_{peak}$) and frequencies. In simple view of the $g_{rms}$ & $g_{peak}$, although the results of MRBD are more similar to ones of the real vehicle driving tests, but the results of RFlex have more information to get various useful dynamic characteristics.

전기자동차 에너지효율 평가를 위한 수치해석 연구 (Numerical Analysis Research for Evaluating the Energy Efficiency of Electric Vehicles)

  • 최민기
    • 한국분무공학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2024
  • This paper is a numerical analysis study for evaluating the energy efficiency of electric vehicles. Currently, the methods for testing and evaluating the energy consumption efficiency of electric vehicles have limitations such as resources and time. Therefore, there is a need for research on developing models to predict the energy consumption efficiency of electric vehicles. In this study, a numerical analysis research is conducted to predict the energy efficiency of electric vehicles using a vehicle dynamics numerical analysis model. To validate the accuracy of the simulation model, it is compared the results of dynamometer tests with the simulation results and used the Unified Diagnostic Services (UDS) protocol to acquire internal data from the electric vehicle. It is ensured the reliability of the simulation model by comparing data such as motor speed, battery voltage, current, state of charge (SOC), regenerative braking power generation, and total driving distance of the test vehicle with dynamometer test data and simulation model results.

Numerical Analysis on Separation Dynamics of Strap-On Boosters in the Dense Atmosphere

  • Choi, Seongjin;Ko, Soon-Heum;Kim, Chongam;Rho, Oh-Hyun;Park, Jeong-joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제2권2호
    • /
    • pp.1-18
    • /
    • 2001
  • A numerical technique for simulating the separation dynamics of strap-on boosters jettisoned in the dense atmosphere is presented. Six degree of freedom rigid body equations of motion are integrated into the three-dimensional unsteady Navier-Stokes solution procedure to determine the dynamic motions of strap-ons. An automated Chimera overlaid grid technique is introduced to achieve maximum efficiency for multi-body dynamic motion and a domain division technique is implemented in order to reduce the computational cost required to find interpolation points in the Chimera grids. The flow solver is validated by comparing the computed results around the Titan IV launch vehicle with experimental data. The complete analysis process is then applied to the. H-II launch vehicle, the central rocket in japans space program, the CZ-3C launch vehicle developed in China and the KSR-III, a three-stage sounding rocket being developed in Korea. From the analyses, separation trajectories of strap-on boosters are predicted and aerodynamic characteristics around the vehicles at every time interval are examined. In addition, separation-impulse devices generally introduced for safe separation of strap-ons are properly modeled in the present paper and the jettisoning force requirements are examined quantitatively.

  • PDF

무인 잠수정의 퍼지제어 (Fuzzy Control of Underwater Robotic Vehicles)

  • 이원창;강근택
    • 동력기계공학회지
    • /
    • 제2권2호
    • /
    • pp.47-54
    • /
    • 1998
  • Underwater robotic vehicles(URVs) have been an important tool for various underwater tasks such as pipe-lining, data collection, hydrography mapping, construction, maintenance and repairing of undersea equipment, etc because they have greater speed, endurance, depth capability, and safety than human divers. As the use of such vehicles increases, the vehicle control system is one of the most critical subsystems to increase autonomy of the vehicle. The vehicle dynamics are nonlinear and their hydrodynamic coefficients are often difficult to estimate accurately. It is desirable to have an intelligent vehicle control system because the fixed-parameter linear controller such as PID may not be able to handle these changes promptly and result in poor performance. In this paper we described and analyzed a new type of fuzzy model-based controller which is designed for underwater robotic vehicles and based on Takagi-Sugeno-Kang(TSK) fuzzy model. The proposed fuzzy controller: 1) is a nonlinear controller, but a linear state feedback controller in the consequent of each local fuzzy control rule; 2) can guarantee the stability of the closed-loop fuzzy system; 3) is relatively easy to implement. Its good performance as well as its robustness to parameter changes will be shown and compared with those of the PID controller by simulation.

  • PDF

Fin failure diagnosis for non-linear supersonic air vehicle based on inertial sensors

  • Ashrafifar, Asghar;Jegarkandi, Mohsen Fathi
    • Advances in aircraft and spacecraft science
    • /
    • 제7권1호
    • /
    • pp.1-17
    • /
    • 2020
  • In this paper, a new model-based Fault Detection and Diagnosis (FDD) method for an agile supersonic flight vehicle is presented. A nonlinear model, controlled by a classical closed loop controller and proportional navigation guidance in interception scenario, describes the behavior of the vehicle. The proposed FDD method employs the Inertial Navigation System (INS) data and nonlinear dynamic model of the vehicle to inform fins damage to the controller before leading to an undesired performance or mission failure. Broken, burnt, unactuated or not opened control surfaces cause a drastic change in aerodynamic coefficients and consequently in the dynamic model. Therefore, in addition to the changes in the control forces and moments, system dynamics will change too, leading to the failure detection process being encountered with difficulty. To this purpose, an equivalent aerodynamic model is proposed to express the dynamics of the vehicle, and the health of each fin is monitored by the value of a parameter which is estimated using an adaptive robust filter. The proposed method detects and isolates fins damages in a few seconds with good accuracy.

퍼셉션 넷에 기반한 차량의 자동 차선 위치 제어에 관한 연구 (A Study on the automatic Lane keeping control method of a vehicle based upon a perception net)

  • 부광석;정문영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.257-257
    • /
    • 2000
  • The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A predictive control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in forward and backward direction in such a way to satisfy the given constraint condition, maintain consistency, reduce the uncertainties, and guarantee robustness. A series of experiments was conducted to evaluate the control performance, in which a car Like robot was utilized to quit unwanted safety problem. As the results, the robot was keeping very well a given lane with arbitrary shape at moderate speed.

  • PDF

Attitude Dynamics Identification of Unmanned Aircraft Vehicle

  • Salman Shaaban Ali;Sreenatha Anavatti G.;Choi, Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권6호
    • /
    • pp.782-787
    • /
    • 2006
  • The role of Unmanned Aircraft Vehicles(UAVs) has been increasing significantly in both military and civilian operations. Many complex systems, such as UAVs, are difficult to model accurately because they exhibit nonlinearity and show variations with time. Therefore, the control system must address the issues of uncertainty, nonlinearity, and complexity. Hence, identification of the mathematical model is an important process in controller design. In this paper, attitude dynamics identification of UAV is investigated. Using the flight data, nonlinear state space model for attitude dynamics of UAV is derived and verified. Real time simulation results show that the model dynamics match experimental data.

DGPS/RTK를 이용한 위험운전 판단장치 성능검증에 관한 연구 (Study of Risky Driving Decision Device using DGPS/RTK)

  • 오주택;이상용
    • 대한토목학회논문집
    • /
    • 제30권3D호
    • /
    • pp.303-311
    • /
    • 2010
  • 현재 사업용 차량의 교통사고 감소 및 안전운전에 대한 사회적 요구에 부흥하기 위하여 디지털 주행기록계, 차량용 블랙박스 등 다양한 형태의 시스템이 사용되고 있으나, 이러한 시스템은 주행 후 저장된 차량데이터를 기반으로 위험 운전 여부를 분석하기 때문에 위험운전을 실시간으로 예방하기에는 큰 한계성을 있는 것이 사실이다. 이에 본 연구의 선행연구에서는 차량 운전자의 운전행태에 따른 차량동역학 데이터를 저장 판단하여 운전자에게 실시간으로 경고정보를 제공하여 운전자의 안전운전을 향상 시킬 수 있는 위험운전 판단장치를 개발하였으나, 이에 대한 성능평가가 이루어 지지 않고 있는 실정이다. 따라서 본 연구에서는 기 개발된 위험운전 판단장치의 성능평가를 위하여 DGPS를 이용한 정밀위치 인식시스템을 구축하였다. 실험 결과 위험운전 판단장치에서 취득되는 차량 동역학 데이터와 DGPS를 통하여 취득되는 데이터가 거의 일치하는 것으로 분석되었다. 따라서 구축된 정밀위치 인식시스템을 통하여 위험운전 판단장치의 성능이 검증되면 차량의 위험운전 관리에 매우 효과가 있을 것으로 판단된다.

A Study on the Automatic Lane Keeping Control Method of a Vehicle Based upon a Perception Net

  • Ahn, Doo-Sung;Choi, Jae-Weon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.160.3-160
    • /
    • 2001
  • The objective of this research is to monitor and control the vehicle motion in order to remove out the existing safety risk based upon the human-machine cooperative vehicle control. A new control method is proposed to control the steering wheel of the vehicle to keep the lane. Desired angle of the steering wheel to control the vehicle motion could be calculated based upon vehicle dynamics, current and estimated pose of the vehicle every sample steps. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net, where not only the state variables, but also the corresponding uncertainties were propagated in ...

  • PDF

Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증 (Development of Autonomous Navigation System Using Simulation Based on Unity-ROS)

  • 김기원;방현태;서정화;윤원근
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.