졸음운전은 사고발생 확률이 높고, 사고 발생 시 심각도가 높기 때문에 효율적인 졸음운전 판단 시스템이 필요하다. 그러나 생체 신호나 비전을 이용한 졸음운전 판단시스템은 비용 측면에서 활용되기가 어렵다. 이에 본 논문에서는 추가적인 비용 없이 대부분의 차량에 기본 장착되어 있는 조향각 센서(steering angle sensor)와 차량정보(brake switch, throttle position signal, vehicle speed)를 이용하여 졸음운전자의 조향패턴 중 하나인 저킹 판단을 이용한 졸음운전 판단 알고리즘을 제안한다. 본 연구에서는 각 변수의 임계값을 제시하고, HILS(Hardware in the Loop Simulation)에서 CAN을 통해 취득한 차량의 데이터와 Matlab 프로그램을 이용하여 알고리즘을 평가한다.
자동차의 자율주행 기술이 확대되면서 '눈'의 역할을 하는 센서가 점차 중요시되고 있다. 최근 차량에 장착되는 라이다 센서는 채널이 많을수록 피사체에 반사된 신호 또한 풍부해짐에 따라 장애물, 지형, 차량 등 주변 환경 탐색의 정확도가 높아진다. 하지만, 라이다 센서는 채널 증가에 따른 열배 이상 가격의 차이가 있으며, 이러한 가격적인 문제로 보급형 차량보다는 고가의 차량에만 부분적으로 사용되고 있다. 본 연구는 저 가격의 16 채널의 라이다를 복수개로 구성하여 동시에 신호를 수집 처리하여 하나의 입체공간으로 융합하고 이를 나타낼 수 있게 함으로써 64 채널의 라이더와 같은 효과를 나타낼 수 있게 하였다. 이를 통해서 차량 심미성의 개선과 함께 보급화를 위한 기반을 제공할 수 있다.
주요 도시의 대규모 주차장에서 실내 차량 측위는 필수 구성 요소지만, 다양한 기술적 한계 및 불완전한 무선 채널 환경은 기존 측위 기법의 정확도를 심각하게 저하시킨다. 본 논문은 저비용 비콘을 활용하여 실내 공간 내 이동 차량이 비콘의 RSS (Received Signal Strength) 값만을 사용하여 근접 비콘 및 이동 방향을 감지하는 기법을 제시한다. 제안된 근접 감지 기법은 다방향 DRSS (Differential RSS) 기술을 활용하여 주위 환경, 차량 및 모바일 기기의 영향을 최소화한다. 본 논문에서는 저가의 블루투스 모듈을 사용하여 다방향 비콘 프로토타입을 개발하였으며, 측위 성능은 394.8m×304.3m 대규모 면적의 실제 지하 주차장에 96개의 비콘을 설치하여 관련 성능을 평가하였다. 실험 결과 근접 감지 오차의 90번째 백분위수는 0.8m이며, 제안된 기법은 다양한 차량 및 모바일 기기의 영향을 최소화하여 강건한 근접 감지 성능을 보장한다.
최근 톨게이트의 자동요금징수시스템 (ETC, Electronic Toll Collection System), 버스안내시스템, 주차관리 시스템 등 다양한 분야에서 근거리 무선통신 (DSRC, Dedicated Short Range Communication) 기술이 활용되고 있다. 본 논문에서는 이를 활용한 교통정보시스템을 설계하였다. 기존 차량감지기를 이용한 지점검지 기반의 교통정보시스템이 수집과 제공이 별도로 운영되는 시스템인 반면, 근거리무선통신을 이용한 구간검지 기반의 교통정보시스템은 기지국과 차량 단말기간 통신을 통하여 교통정보 수집 및 제공이 가능하다. 차량감지기가 지점정보를 구간교통정보로 가공하기 때문에 지점 통과속도가 구간평균속도로 변환되는 과정에서 혼잡 상황의 속도가 높게 나타난다. 소통상태가 악화되었을 경우, 차량감지기가 근거리 무선통신에 비해 통행속도가 높게 나타난다. 특히, 근거리 무선통신을 이용한 교통정보시스템의 통행속도의 데이터별 편차가 크게 감소하였고, 돌발상황 검지 및 교통상황을 신속하게 파악할 수 있는 것으로 분석되었다.
본 논문에서는 간단히 한국통신학회본 논문에서는 웨이브렛 영역에서의 질감 유사성을 특징으로 사용함으로써 프레임간의 급격한 밝기변화에 강건한 특성을 가지는 툴게이트 과금을 위한 차량검지 및 차종분류 알고리듬을 제안하였다. 질감의 유사성을 나타내는 특징으로는 웨이브렛 변환된 입력영상과 배경영상 간의 국부상관계수를 이용하였다. 기존의 차량검지에서 사용되었던 특징인 차영상에 대한 분산과 비교하여 제안된 특징의 유용성을 정상적으로 분석하였으며, 실제 테스트 영상에 대하여 차량과 그림자가 관측되거나 관측되지 않는 도로와의 구분 용이성 정도를 측정함으로써 제안된 특징의 우수성을 보인다. 현장 테스트에 대한 실험 결과는 제안된 차량검지 및 차종분류 알고리듬이 센서의 특성과 그림자의 발생에 의한 프레임 간의 급격한 밝기 변화와 같은 상황하에서도 매우 안정적이며 우수한 성능을 보이는 것을 확인할 수 있다.
본 논문에서는 도로에서 주행 중인 차량검출 알고리즘에 대하여 연구한다. 카메라에서 입력된 영상으로부터 차량을 검출하기위해 먼저 분할 및 합병(split & merge)방법을 적용하여 영상을 분할하고 그 다음 분할된 영역을 해석하여 차량이 위치할 가능성이 높은 영역을 집중적으로 탐색하여 차량을 실시간으로 검출하는 알고리즘을 연구한다. 전방차량의 후면을 검출하기 위하여 수직/수평 성분을 특정으로 하였으며 적분영상을 이용하여 계산시간을 줄일 수 있는 Haar-like방법을 적용하였으며 분류기로는 SVM을 사용하였다. 제안된 방법의 성능을 평가하기 위해 350개의 영상을 사용하여 분류기를 학습하였으며 또한 학습에 사용하지 않은 비학습영상 150개를 사용하여 인식률을 구하였다. 실험결과 비학습영상에 대해 95.00%의 인식률을 얻었다.
본 논문에서는 ITS 응용을 위한 Alamouti 기법을 이용한 효과적인 차량 검출 성능을 분석하였다. 차량 검출은 DSRC (Dedicated Short Range Communication) 기반의 하이패스 환경에서 실험하였다. 시스템 성능으로는 비트 에러 확률로 실험 결과 값에 대하여 분석하였으며, 실험환경은 진입차량의 속도를 60km/h로 가정하여 DSRC 기반의 변조방식인 ASK 기법 을 적용하여 실험하였다. 또한 적용된 채널은 Rician 채널을 적용하여 LOS (Line of Sight)환경을 고려하며 실험을 하였다. 또한 사용된 반송파 주파수는 일본 DSRC 시스템 하향링크를 참고하여 5.8GHz를 적용하였다. 실험결과로 안테나가 2개일 경우와 Alamouti 기법을 적용할 때의 검출성능을 각각 나타내었으며, Alamouti 기법을 적용할 때 성능이 보다 개선되었음을 본 실험을 통해 알 수 있었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권12호
/
pp.2355-2373
/
2011
Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.
This paper describes the algorithm development of a new body pressure detection sensor for occupant classification system. U.S. Government has required that advanced airbag system should be installed to every automobiles after 2006 according to FMVSS 208 regulation. Therefore, Occupant Classification System should be provided the passenger with safety in order to protect the infants or children that sit in the front passenger seat. When an occupant sits on the chair of the vehicle, deployment of the airbag depends on passenger's weigh distribution and postures. Authors have been developed a new pattern recognition of passenger and weight distribution at the same time by Force Sensing Resistor for the safety.
International Journal of Computer Science & Network Security
/
제23권11호
/
pp.67-72
/
2023
In the past decade, Autonomous Vehicle Systems (AVS) have advanced at an exponential rate, particularly due to improvements in artificial intelligence, which have had a significant impact on social as well as road safety and the future of transportation systems. The fusion of light detection and ranging (LiDAR) and camera data in real-time is known to be a crucial process in many applications, such as in autonomous driving, industrial automation and robotics. Especially in the case of autonomous vehicles, the efficient fusion of data from these two types of sensors is important to enabling the depth of objects as well as the classification of objects at short and long distances. This paper presents classification of objects using CNN based vision and Light Detection and Ranging (LIDAR) fusion in autonomous vehicles in the environment. This method is based on convolutional neural network (CNN) and image up sampling theory. By creating a point cloud of LIDAR data up sampling and converting into pixel-level depth information, depth information is connected with Red Green Blue data and fed into a deep CNN. The proposed method can obtain informative feature representation for object classification in autonomous vehicle environment using the integrated vision and LIDAR data. This method is adopted to guarantee both object classification accuracy and minimal loss. Experimental results show the effectiveness and efficiency of presented approach for objects classification.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.