• 제목/요약/키워드: vegetable structure

검색결과 75건 처리시간 0.024초

Ultrastructural Aspects of the Mixed Infections of Watermelon Mosaic Potyvirus and Cucumber Green Mottle Mosaic Tobamovirus Isolated from Watermelon

  • Kim, Jeong-Soo;Cho, Jeom-Deog;Park, Hong-Soo;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • 제16권4호
    • /
    • pp.211-215
    • /
    • 2000
  • Symptoms on 4 varieties of watermelons inoculated with watermelon mosaic potyvirus II isolated from watermelon (WMV-W) were severe mosaic and leaf malformation while those inoculated with cucumber green mottle mosaic tobamovirus from watermelon (CGMMV-W) were mild mosaic and chlorotic spots. Inoculation of the mixture of WMV-W and CGMMV-W produced extremely severe mosaic along with necrotic spots and general necrosis. Doubly infected plants were also stunted. Cells infected with WMV-W or CGMMV-W alone exhibited the intrinsically ultra-structural properties of each virus infection. WMV-W induced potyvirus-characteristic cylindrical inclusions in the cytosol. Virus particles were orderly aligned along the tonoplasts. CGMMV-W induced tobamovirus-characteristic stacked crystalline arrays of virus particles in the cytosol. Cells infected doubly with WMV-W and CGMMV-W contained striking cytopathic effects that were not present in single infection of each virus. The unique ring structure, nonagon, was that a single potyvirus particle was surrounded by 9 CGMMV-W tobamovirus particles.

  • PDF

무용매 , 무유화제 공정에 의한 메틸프룩토시드 올레산 폴리에스테르의 합성 (Solvent-free, Soap-free Synthesis Process of Methyl Fructoside Oleic Acid Polyester)

  • 허주형;김종태;김해성
    • 한국응용과학기술학회지
    • /
    • 제15권4호
    • /
    • pp.45-56
    • /
    • 1998
  • Methyl fructoside oleic acid polyester(MFPE), fructose-based sugar polyester, was synthesized by solvent-free, soap-free transesterification of methyl oleate with methyl fructoside(MF) as a sugar starting material in the presence of conventional potassium carbonate basic catalyst. Methyl fructoside was found to be an effective sugar starting material, because of its low softning point, high heat stability, high miscibility, and high reactivity than other sugars. Yield 98% of purified MFPE based on initial weight of MF was obtained at 1:5 of the molar ratio of methyl fructoside to methyl oleate, 2%(w/w) of potassium carbonate catalyst content, 20${\sim}$200mmHg of reduced pressure and $180^{\circ}C$ of reaction temperature. MFPE structure was confirmed by infrared and proton nuclear magnetic resonance spectroscopy. Physical properties of methyl of fructoside oleic acid polyester such as viscosity, HLB, solubility, color, refractive index, specific gravity, and density were similar to physical properties of sucrose polyesters(SPE) and vegetable oils. Then, it was elucidated that MFPE was sufficient to replace the SPE and conventional oils.

경유 대체연료로서 수첨바이오디젤의 윤활 특성 연구 (Lubricity Characterization of Hydrogenated Biodiesel as an Alternative Diesel Fuel)

  • 김재곤;전철환;임의순;정충섭
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.321-327
    • /
    • 2012
  • Paraffin bio-based hydrotreated biodiesel(HBD) is originated from vegetable oil(the process can also be applied to animal fat) with the the chemical structure $C_nH_{2n+2}$. In the number of process of the oil or fat, the hydrogenation is significantly important to create a bio-based diesel fuel. This study is focused on lubricity characteristics of BTL diesel blends to use alternative diesel fuel in Korea. The BTL diesel are blended the different volume ratios (HBD 5(5 vol.% HBD - 95 vol.% diesel), HBD 10, HBD 20, HBD 30, HBD 40 and HBD 50. HBD with paraffin compounds showed a very high centane number, low sulfur content and free aromatic compound. Especially, the wear scar of HBD showed poor lubricity compared to automotive diesel due to the fuel composition, low sulfur content and free aromatic compound. Also, the lubricity specification of automotive diesel with different six HBD blends is within the limit by the Korean standards. Finally, HBD as an alternative diesel fuel is challengeable in transportation sector of Korea.

A Food and Nutrition System Analysis of South Korea

  • Jeffery Sobal;Lee, Soo-Kyung
    • Journal of Community Nutrition
    • /
    • 제5권4호
    • /
    • pp.209-217
    • /
    • 2003
  • The food and nutrition system is a network of processes linking agriculture, food, eating, nutrition, and health. The system includes a series of nine stages (production, processing, distribution, acquisition, preparation, consumption, digestion, transport, and utilization) and two types of contexts (biophysical and sociocultural). Analysis of whole food and nutrition systems provides information about the structure and processes involved in the complete scope of food and nutrition, assisting in the identification of ″upstream″ influences and ″downstream″ consequences in the system. The current analysis gathered existing data about the food and nutrition system in South Korea from public sources and professional publications, and interpreted that information to consider how different elements of the system contribute to health. The findings revealed that South Korea has substantial domestic food production and processing supplemented by imports, widespread food distribution in markets and a growing number of Korean and Western restaurants, a relatively low percentage of household income spent on food, growing use of new food preparation methods such as microwave ovens, a rice/vegetable/fish based three-meal consumption pattern, few recorded digestive problems, increasing calorie storage as body fat, and a relatively low chronic disease prevalence compared to other developed societies. Examination of the full scope of the food and nutrition system provides a broad perspective using whole system thinking that can identify potential strategies for future research and intervention.

Bioproduction and Anticancer Activity of Biosurfactant Produced by the Dematiaceous Fungus Exophiala dermatitidis SK80

  • Chiewpattanakul, Paramaporn;Phonnok, Sirinet;Durand, Alain;Marie, Emmanuelle;Thanomsub, Benjamas Wongsatayanon
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1664-1671
    • /
    • 2010
  • A new biosurfactant producer was isolated from palm-oil-contaminated soil and later identified through morphology and DNA sequencing as the yeast-like fungus Exophiala dermatitidis. Biosurfactant production was catalyzed by vegetable oil, supplemented with a basal medium. The culture conditions that provided the biosurfactant with the highest surface activity were found to be 5% palm oil with 0.08% $NH_4NO_3$, at a pH of 5.3, with shaking at 200 rpm, and a temperature of $30^{\circ}C$ for a 14-day period of incubation. The biosurfactant was purified, in accordance with surfactant properties, by solvent fractionation using silica gel column chromatography. The chemical structure of the strongest surface-active compound was elucidated through the use of NMR and mass spectroscopy, and noted to be monoolein, which then went on to demonstrate antiproliferative activity against cervical cancer (HeLa) and leukemia (U937) cell lines in a dose-dependent manner. Interestingly, no cytotoxicity was observed with normal cells even when high concentrations were used. Cell and DNA morphological changes, in both cancer cell lines, were observed to be cell shrinkage, membrane blebbling, and DNA fragmentation.

Transesterification Using the Cross-Linked Enzyme Aggregate of Photobacterium lipolyticum Lipase M37

  • Han, Jin-Yee;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1159-1165
    • /
    • 2011
  • Biodiesel is methyl and ethyl esters of long-chain fatty acids produced from vegetable oils or animal fats. Lipase enzymes have occasionally been used for the production of this biofuel. Recently, biodiesel production using immobilized lipase has received increased attention. Through enhanced stability and reusability, immobilized lipase can contribute to the reduction of the costs inherent to biodiesel production. In this study, methanol-tolerant lipase M37 from Photobacterium lipolyticum was immobilized using the cross-linked enzyme aggregate (CLEA) method. Lipase M37 has a high lysine content (9.7%) in its protein sequence. Most lysine residues are located evenly over the surface of the protein, except for the lid structure region, which makes the CLEA preparation yield quite high (~93%). CLEA M37 evidences an optimal temperature of $30^{\circ}C$, and an optimal pH of 9-10. It was stable up to $50^{\circ}C$ and in a pH range of 4.0-11.0. Both soluble M37 and CLEA M37 were stable in the presence of high concentrations of methanol, ethanol, 1-propanol, and n-butanol. That is, their activities were maintained at solvent concentrations above 10% (v/v). CLEA M37 could produce biodiesel from olive oil and alcohols such as methanol and ethanol. Additionally, CLEA M37 generated biodiesel via both 2-step methanol feeding procedures. Considering its physical stability and reusability, CLEA M37 may potentially be used as a catalyst in organic synthesis, including the biodiesel production reaction.

단상계 침지냉각 기술이 적용된 Li-ion계 배터리 발열특성에 관한 연구 (A Study on Heating Characteristics of Li-ion Battery Applicated Single-phase Immersion Cooling Technology)

  • 김운학;강석원;신기석
    • 한국재난정보학회 논문집
    • /
    • 제18권1호
    • /
    • pp.163-172
    • /
    • 2022
  • 연구목적: Li-ion 배터리의 효율적인 열관리 기술을 확보하기 위하여 Single&-phase 침지 냉각 기술을 적용한 시스템의 실험을 통하여 적용가능성을 확인하고자 하였다. 연구방법: LG-Chem에서 생산된 JH3 파우치 셀을 사용하여 14S2P 모듈을 제조하여 미국 카길사에서 생산된 식물성계 냉각유체에 침지한 후 0.3C~1C 속도로 충방전을 시행하여 열분포를 확인하였다. 연구결과: 침지냉각 기술로 배터리 모듈을 40℃ 이하의 온도로 관리할 수 있으며, 침지액의 분자구조 변화가 없다는 결과를 도출하였다. 결론: 침지냉각 방식이 Li-ion 배터리 열관리에 적용 가능함을 확인하였다.

호박 종간잡종에서 생장점 결여현상의 유전 (Inheritance of Shoot-Lacking Phenomenon in Interspecific Hybrids of Squash)

  • 홍규현;허윤찬;우영회;이관호
    • 현장농수산연구지
    • /
    • 제12권1호
    • /
    • pp.47-52
    • /
    • 2010
  • 페포종 호박과 동양종 호박의 종간잡종 후대에서 자엽만 자라고 본엽이 전혀 나타나지 않는 생장점 결여현상이 발견되었으며, 이 특성은 유전분석 결과 두 쌍의 열성 동형접합인자에 의해 발현되는 것으로 밝혀졌다.

Genetic Diversity and Population Structure of Korean Soybean Collection Using 75 Microsatellite Markers

  • Lee, Gi-An;Choi, Yu-Mi;Yi, Jung-Yoon;Chung, Jong-Wook;Lee, Myung-Chul;Ma, Kyung-Ho;Lee, Sok-Young;Cho, Jin-Woong;Lee, Jung-Ro
    • 한국작물학회지
    • /
    • 제59권4호
    • /
    • pp.492-497
    • /
    • 2014
  • Soybean (Glycine max L.) is crucial legume crop as source of high quality vegetable protein and oil, and Korea is regarded as a part of center of soybean origin. To expand the information of conserved genetic diversity, we analyzed the genetic variability of soybean collection mainly introduced Korean accessions using 75 microsatellite markers. A total of 1,503 alleles with an average value of 20.0 alleles were detected among 644 accessions. Korean collection revealed average allele number of 13.4 while Chinese, Japanese and Southeast Asian accessions showed 9.0, 5.4 and 6.5 mean alleles, respectively. Especially, Korean accessions showed more number of private allele per locus as 3.4 contrary to other geographical groups. The mean expected heterozygosity and polymorphic information content was 0.654 and 0.616, respectively, and expected heterozygosity values were not significantly distinguished according to the geographical groups. The phylogenetic dendrogram and deduced population structure based on DNA profiles of 75 SSR loci showed Korean accessions formed distinct gene pool against Chinese accessions, and could be divided into five subpopulations. Korean soybean accessions have specific genetic diversity and might be serve the valuable alleles for bio-industry as a part of the center of soybean origin.

Characterization of Acid- and Pepsin-soluble Collagens from Rockfish Sebastes schlegeli Skin

  • Kim, Hyung-Jun;Jee, Seong-Joon;Yoon, Min-Suck;Youn, Mu-Ho;Kang, Kyung-Tae;Lee, Dong-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • 제12권1호
    • /
    • pp.6-15
    • /
    • 2009
  • Biochemical and functional properties of acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from rockfish skin were characterized. Yield of PSC (90.0%) was higher than that of ASC (63.2%). Both ASC and the PSC consisted of ${\alpha}1$ and ${\alpha}2$ chains, and $\alpha$-cross-linked components. According to the results of hydroxylation of proline and lysine, and FT-IR, no difference between the helical structure of ASC and PSC was identified. Thermal denaturation temperature (TDT) of ASC from rockfish skin was $22.8^{\circ}C$, the same as exhibited in PSC. Both ASC and PSC were higher in water absorption capacity (WAC) and oil absorption capacity (OAC) than other vegetable proteins. According to the results of emulsifying activity (EA) and cooking stability (CS), both ASC and PSC from rockfish skin were inferior compared to the commercial emulsifier (Tween-80). The results of FT-IR suggested that the structure of PSC was slightly different when compared to that of ASC. No differences in solubility were established between ASC and PSC from rockfish skin at various pH and NaCl concentrations.