Browse > Article
http://dx.doi.org/10.7740/kjcs.2014.59.4.492

Genetic Diversity and Population Structure of Korean Soybean Collection Using 75 Microsatellite Markers  

Lee, Gi-An (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Choi, Yu-Mi (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Yi, Jung-Yoon (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Chung, Jong-Wook (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Lee, Myung-Chul (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Ma, Kyung-Ho (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Lee, Sok-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Cho, Jin-Woong (College of Agricultural and Life Science, Chungnam National University)
Lee, Jung-Ro (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.59, no.4, 2014 , pp. 492-497 More about this Journal
Abstract
Soybean (Glycine max L.) is crucial legume crop as source of high quality vegetable protein and oil, and Korea is regarded as a part of center of soybean origin. To expand the information of conserved genetic diversity, we analyzed the genetic variability of soybean collection mainly introduced Korean accessions using 75 microsatellite markers. A total of 1,503 alleles with an average value of 20.0 alleles were detected among 644 accessions. Korean collection revealed average allele number of 13.4 while Chinese, Japanese and Southeast Asian accessions showed 9.0, 5.4 and 6.5 mean alleles, respectively. Especially, Korean accessions showed more number of private allele per locus as 3.4 contrary to other geographical groups. The mean expected heterozygosity and polymorphic information content was 0.654 and 0.616, respectively, and expected heterozygosity values were not significantly distinguished according to the geographical groups. The phylogenetic dendrogram and deduced population structure based on DNA profiles of 75 SSR loci showed Korean accessions formed distinct gene pool against Chinese accessions, and could be divided into five subpopulations. Korean soybean accessions have specific genetic diversity and might be serve the valuable alleles for bio-industry as a part of the center of soybean origin.
Keywords
microsatellites; genetic diversity; soybean; Glycine max L.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schmutz, J., S. B. Cannon, J. Schlueter, J. Ma, T. Mitros, W. Nelson, D. L. Hyten, Q. Song, J. J. Thelen, and J. Cheng. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463(7278) : 178-183.   DOI   ScienceOn
2 Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nat. Biotechnol. 18(2) : 233-234.   DOI   ScienceOn
3 Wang, L., R. Guan, L. Zhangxiong, R. Chang, and L. Qiu. 2006. Genetic diversity of Chinese cultivated soybean revealed by SSR markers. Crop Sci. 46(3) : 1032-1038.   DOI   ScienceOn
4 Yoon, M. S., J. Lee, C. Y. Kim, J. H. Kang, E. G. Cho, and H. J. Baek. 2009. DNA profiling and genetic diversity of Korean soybean (Glycine max (L.) Merrill) landraces by SSR markers. Euphytica 165(1) : 69-77.   DOI
5 Yu, H., and Y. T. Kiang. 1993. Genetic variation in South Korean natural populations of wild soybean (Glycine soja). Euphytica 68(3) : 213-221.   DOI
6 Choi, I. Y., J. H. Kang, H. S. Song, and N. S. Kim. 1999. Genetic diversity measured by simple sequence repeat variations among the wild soybean, Glycine soja, collected along the riverside of five major rivers in Korea. Genes Genet. Syst. 74(4) : 169-177.   DOI   ScienceOn
7 Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1(4) : 19-21.   DOI   ScienceOn
8 Dong, Y., L. Zhao, B. Liu, Z. Wang, Z. Jin, and H. Sun. 2004. The genetic diversity of cultivated soybean grown in China. Theor. Appl. Genet. 108(5) : 931-936.   DOI
9 Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8) : 2611-2620.   DOI   ScienceOn
10 Guan, R., R. Chang, Y. Li, L. Wang, Z. Liu, and L. Qiu. 2010. Genetic diversity comparison between Chinese and Japanese soybeans (Glycine max (L.) Merr.) revealed by nuclear SSRs. Genet. Resour. Crop Evol. 57(2) : 229-242.   DOI
11 Hisano, H., S. Sato, S. Isobe, S. Sasamoto, T. Wada, A. Matsuno, T. Fujishiro, M. Yamada, S. Nakayama, and Y. Nakamura. 2007. Characterization of the soybean genome using EST-derived microsatellite markers. DNA Res. 14(6) : 271-281.
12 Hyten, D. L., Q. Song, Y. Zhu, I. Y. Choi, R. L. Nelson, J. M. Costa, J. E. Specht, R. C. Shoemaker, and P. B. Cregan. 2006. Impacts of genetic bottlenecks on soybean genome diversity. Proc. Natl. Acad. Sci. USA 103(45) : 16666-16671.   DOI   ScienceOn
13 Song, J. Y., X. M. Piao, Y. M. Choi, G. A. Lee, J. W. Chung, J. R. Lee, Y. I. Jung, H. J. Park, and M. C. Lee. 2013. Evaluation of genetic diversity and comparison of biochemical traits of soybean (Glycine max L.) germplasm collections. Plant Breed Biotechnol 1(4) : 374-384.   DOI
14 Kim, M. Y., S. Lee, K. Van, T. H. Kim, S. C. Jeong, I. Y. Choi, D. S. Kim, Y. S. Lee, D. Park, and J. Ma. 2010. Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc. Natl Acad. Sci. USA 107(51) : 22032-22037.   DOI   ScienceOn
15 Lee, G. A., J. S. Sung, S. Y. Lee, J. W. Chung, J. Y. Yi, Y. G. Kim, and M. C. Lee. 2014. Genetic assessment of safflower (Carthamus tinctorius L.) collection with microsatellite markers acquired via pyrosequencing method. Mol Ecol Resour 14(1) : 69-78.   DOI
16 Lee, J. D., T. D. Vuong, H. Moon, J. K. Yu, R. Nelson, H. T. Nguyen, and J. G. Shannon. 2011. Genetic diversity and population structure of Korean and Chinese soybean [Glycine max (L.) Merr.] accessions. Crop Sci. 51(3) : 1080-1088.   DOI
17 Li, Z., and R. L. Nelson. 2001. Genetic diversity among soybean accessions from three countries measured by RAPDs. Crop Sci. 41(4) : 1337-1347.   DOI   ScienceOn
18 Lee, J. D., J. K. Yu, Y. H. Hwang, S. Blake, Y. S. So, G. J. Lee, H. Nguyen, and J. G. Shannon. 2008. Genetic Diversity of Wild Soybean (Glycine soja Sieb. and Zucc.) Accessions from South Korea and Other Countries. Crop Sci. 48(2) : 606-616.   DOI   ScienceOn
19 Li, Y. H., M. J. Smulders, R. Z. Chang, and L. J. Qiu. 2011. Genetic diversity and association mapping in a collection of selected Chinese soybean accessions based on SSR marker analysis. Conserv. Genet. 12(5) : 1145-1157.   DOI
20 Li, Y., R. Guan, Z. Liu, Y. Ma, L. Wang, L. Li, F. Lin, W. Luan, P. Chen, and Z. Yan. 2008. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China. Theor. Appl. Genet. 117(6) : 857-871.   DOI
21 Liu, K., and S. V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9) : 2128-2129.   DOI   ScienceOn
22 Mulato, B. M., M. Moller, M. I. Zucchi, V. Quecini, and J. B. Pinheiro. 2010. Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Pesqui. Agropecu. Bras. 45(3) : 276-283.
23 Peakall, R., and P. E. Smouse. 2006. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6(1) : 288-295.   DOI   ScienceOn
24 Pritchard, J., X. Wen, and D. Falush. 2007. Documentation for structure software: Version 2.2. Department of Human Genetics, University of Chicago; Department of Statistics, University of Oxford.