• Title/Summary/Keyword: vector space

Search Result 1,792, Processing Time 0.034 seconds

NTV 식별과정 없는 멀티레벨 인버터의 신속한 공간벡터 PWM 변조기법

  • Oh, Jin-Seok;Lee, Jong-Ho;Jin, Sun-Ho;Kwak, Jun-Ho;Jo, Kwan-Jun;Kim, Jong-Do
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.253-254
    • /
    • 2006
  • this paper suggest a new space vector PWM modulation method with short processing time which does not need idenfication of nearest three vectors(NTV) and duty calculation for each vector. The suggested PWM method makes mean value of phase voltage to be same as reference during every modulation period by use of a triangle in small hexagon on multi-level vector space. This paper described the suggested modulation method can be successfully applied to the space vector modulation use of multi-level inverter by computer simulations and experiments.

  • PDF

CURVES ORTHOGONAL TO A VECTOR FIELD IN EUCLIDEAN SPACES

  • da Silva, Luiz C.B.;Ferreira, Gilson S. Jr.
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1485-1500
    • /
    • 2021
  • A curve is rectifying if it lies on a moving hyperplane orthogonal to its curvature vector. In this work, we extend the main result of [Chen 2017, Tamkang J. Math. 48, 209] to any space dimension: we prove that rectifying curves are geodesics on hypercones. We later use this association to characterize rectifying curves that are also slant helices in three-dimensional space as geodesics of circular cones. In addition, we consider curves that lie on a moving hyperplane normal to (i) one of the normal vector fields of the Frenet frame and to (ii) a rotation minimizing vector field along the curve. The former class is characterized in terms of the constancy of a certain vector field normal to the curve, while the latter contains spherical and plane curves. Finally, we establish a formal mapping between rectifying curves in an (m + 2)-dimensional space and spherical curves in an (m + 1)-dimensional space.

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

General Linearly Constrained Narrowband Adaptive Arrays in the Eigenvector Space

  • Chang, Byong Kun
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.137-142
    • /
    • 2017
  • A general linearly constrained narrowband adaptive array is examined in the eigenvector space. The optimum weight vector in the eigenvector space is shown to have the same performance as in the standard coordinate system, except that the input signal correlation matrix and look direction steering vector are replaced with the eigenvalue matrix and transformed steering vector. It is observed that the variation in gain factor results in the variation in the distance between the constraint plane and the origin in the translated weight vector space such that the increase in gain factor decreased the distance from the constraint plane to the origin, thus affecting the nulling performance. Simulation results showed that the general linearly constrained adaptive array performed better at an optimal gain factor compared with the conventional linearly constrained adaptive array in a coherent signal environment and the former showed similar performance as the latter in a noncoherent signal environment.

A Semantic Aspect-Based Vector Space Model to Identify the Event Evolution Relationship within Topics

  • Xi, Yaoyi;Li, Bicheng;Liu, Yang
    • Journal of Computing Science and Engineering
    • /
    • v.9 no.2
    • /
    • pp.73-82
    • /
    • 2015
  • Understanding how the topic evolves is an important and challenging task. A topic usually consists of multiple related events, and the accurate identification of event evolution relationship plays an important role in topic evolution analysis. Existing research has used the traditional vector space model to represent the event, which cannot be used to accurately compute the semantic similarity between events. This has led to poor performance in identifying event evolution relationship. This paper suggests constructing a semantic aspect-based vector space model to represent the event: First, use hierarchical Dirichlet process to mine the semantic aspects. Then, construct a semantic aspect-based vector space model according to these aspects. Finally, represent each event as a point and measure the semantic relatedness between events in the space. According to our evaluation experiments, the performance of our proposed technique is promising and significantly outperforms the baseline methods.

G-vector-valued Sequence Space Frames

  • Osgooei, Elnaz
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.793-806
    • /
    • 2016
  • G-vector-valued sequence space frames and g-Banach frames for Banach spaces are introduced and studied in this paper. Also, the concepts of duality mapping and ${\beta}$-dual of a BK-space are used to define frame mapping and synthesis operator of these frames, respectively. Finally, some results regarding the existence of g-vector-valued sequence space frames and g-Banach frames are obtained. In particular, it is proved that if X is a separable Banach space and Y is a Banach space with a Schauder basis, then there exist a Y-valued sequence space $Y_v$ and a g-Banach frame for X with respect to Y and $Y_v$.

EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS

  • KIM DONG-SOO;KIM YOUNG HO;PARK SEONG-HEE
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.133-145
    • /
    • 2006
  • We study Riemannian or pseudo-Riemannian manifolds which admit a closed conformal vector field. Subject to the condition that at each point $p{\in}M^n$ the set of conformal gradient vector fields spans a non-degenerate subspace of TpM, using a warped product structure theorem we give a complete description of the space of conformal vector fields on arbitrary non-Ricci flat Einstein spaces.

Elimination of a Common Mode Voltage Pulse in Converter/Inverter System Modifying Space-Vector PWM Method (공간전압벡터 PWM을 이용한 컨버터/인버터 시스템에서의 커먼 모드 전압 펄스 제거)

  • Lee, Hyeon-Dong;Lee, Yeong-Min;Seol, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.2
    • /
    • pp.89-96
    • /
    • 1999
  • This paper proposes a common-mode voltage reduction method base on SVPWM(Space-Vector Pulsewidth Modulation) in three phase PWM converter/inverter system. By shifting the active voltage vector of inverter and aligning this to the active vector of converter, it is possible to eliminate a common-mode voltage pulse in one control period. Since the proposed PWM method maintains the active voltage vector, it does not affect the control performance of PWM converter/inverter system. Without any extra hardware, overall common mode voltage dv/dt and conrresponding leakage current can be reduced to two-third of the conventional three phase symmetric SVPWM scheme.

  • PDF

Simple Space Vector PWM Scheme for 3-level NPC Inverters Including the Overmodulation Region

  • Lee, Dong-Myung;Jung, Jin-Woo;Kwa, Sang-Shin
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.688-696
    • /
    • 2011
  • This paper proposes a simple space vector PWM (SVPWM) scheme including overmodulation operation for 3-level NPC (Neutral Point Clamped) Inverters. The proposed scheme features a simple decision and calculation procedure for determining switching times in the overmodulation range by utilizing the duty calculation method used in 2-level inverters and the minimum phase error projection method widely employed in motor drive systems. The proposed scheme does not need to detect the angle of the reference vector or calculate trigonometric functions to determine the magnitude of the voltage vector. The magnitude of the angle of the new reference voltage vector is decided in advance with the help of the Fourier Series Expansion to extend the linearity of the output voltage of 3-level inverters in the overmodulation region. Experimental results demonstrate the validity of the proposed SVPWM scheme including overmodulation operation for 3-level NPC inverters.