• Title/Summary/Keyword: vector representation

Search Result 289, Processing Time 0.034 seconds

Support Vector Machine based Cluster Merging (Support Vector Machines 기반의 클러스터 결합 기법)

  • Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.369-374
    • /
    • 2004
  • A cluster merging algorithm that merges convex clusters resulted by the Fuzzy Convex Clustering(FCC) method into non-convex clusters was proposed. This was achieved by proposing a fast and reliable distance measure between two convex clusters using Support Vector Machines(SVM) to improve accuracy and speed over other existing conventional methods. In doing so, it was possible to reduce cluster number without losing its representation of the data. In this paper, results for several data sets are given to show the validity of our distance measure and algorithm.

SPARSE ICA: EFFICIENT CODING OF NATURAL SCENES/ (Sparse ICA: 자연영상의 효율적인 코딩\ulcorner)

  • 최승진;이오영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.470-472
    • /
    • 1999
  • Sparse coding은 최소한의 active한 (non-orthogonal) basis vector를 이용하여 데이터를 표시하는 하나의 방법이다. Sparse coding에서 basis coefficient들이 statistically independent 하다는 constraint를 주기에 sparse coding은 independent component analysis(ICA)와 밀접한 관계를 가지고 있다. 본 논문에서는 sparse representation을 위하여 super-Gaussian prior를 이용한 ICA, 즉 sparse ICA 방법을 제시한다. Sparse ICA 방법을 이용하여 natural scenes의 basis vector를 찾고 이와 sparse coding과의 관계를 고찰한다. 여러 가지 super-Gaussian prior들을 고려하지 않고 이들이 ICA에 미치는 영향에 대해 살펴본다.

  • PDF

ON THE GEOMETRY OF THE MANIFOLD MEX2n

  • Yoo, Ki-Jo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.475-487
    • /
    • 2003
  • A generalized even-dimensional Riemannian manifold defined by the ME-connection which is both Einstein and of the form (3.3) is called an even-dimensional ME-manifold and we denote it by $MEX_{2n}$. The purpose of this paper is to study a necessary and sufficient condition that there is an ME-connection, to derive the useful properties of some tensors, and to investigate a representation of the ME-vector in $MEX_{2n}$.

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.

Automatic Generation of Pointillist Representation-like Image from Natural Image (자연 화상에서 점묘화풍 화상으로의 자동생성)

  • Do, Hyeon-Suk;Jo, Pyeong-Dong;Choe, Yeong-Jin
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.1
    • /
    • pp.130-136
    • /
    • 1995
  • This paper is on the development of tools to generate pointillist representation-like images automatically by computer. Pointillist representation -like effects on the generated images are enforced by steps as follows. First, the position of brush stroke is determined from the gradient vector so that the brush touches look more natural. Second, pointillist representation-like coloring is endorsed by changing saturation and value using the RGB components of image. Our approach combines image processing techniques with computer graphics techniques for more faithful pointillist representation-like images and a couple of sample images are presented to show the effectiveness.

  • PDF

Multilayer Knowledge Representation of Customer's Opinion in Reviews (리뷰에서의 고객의견의 다층적 지식표현)

  • Vo, Anh-Dung;Nguyen, Quang-Phuoc;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.652-657
    • /
    • 2018
  • With the rapid development of e-commerce, many customers can now express their opinion on various kinds of product at discussion groups, merchant sites, social networks, etc. Discerning a consensus opinion about a product sold online is difficult due to more and more reviews become available on the internet. Opinion Mining, also known as Sentiment analysis, is the task of automatically detecting and understanding the sentimental expressions about a product from customer textual reviews. Recently, researchers have proposed various approaches for evaluation in sentiment mining by applying several techniques for document, sentence and aspect level. Aspect-based sentiment analysis is getting widely interesting of researchers; however, more complex algorithms are needed to address this issue precisely with larger corpora. This paper introduces an approach of knowledge representation for the task of analyzing product aspect rating. We focus on how to form the nature of sentiment representation from textual opinion by utilizing the representation learning methods which include word embedding and compositional vector models. Our experiment is performed on a dataset of reviews from electronic domain and the obtained result show that the proposed system achieved outstanding methods in previous studies.

  • PDF

Sensitivity Analysis of Width Representation for Gait Recognition

  • Hong, Sungjun;Kim, Euntai
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2016
  • In this paper, we discuss a gait representation based on the width of silhouette in terms of discriminative power and robustness against the noise in silhouette image for gait recognition. Its sensitivity to the noise in silhouette image are rigorously analyzed using probabilistic noisy silhouette model. In addition, we develop a gait recognition system using width representation and identify subjects using the decision level fusion based on majority voting. Experiments on CASIA gait dataset A and the SOTON gait database demonstrate the recognition performance with respect to the noise level added to the silhouette image.

2-D Graphical Representation for Characteristic Sequences of DNA and its Application

  • Li, Chun;Hu, Ji
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.292-296
    • /
    • 2006
  • DNA sequencing has resulted in an abundance of data on DNA sequences for various species. Hence, the characterization and comparison of sequences become more important but still difficult tasks. In this paper, we first give a 2-D ladderlike graphical representation for the characteristic sequences of a DNA sequence, and then construct a 3-component vector, in which the normalized ALE-indices extracted from such three 2-D graphs via D/D matrices are individual components, to characterize the DNA sequence. The examination of similarities/dissimilarities among sequences of the $\beta$-globin genes of different species illustrates the utility of the approach.

Sparse Representation Learning of Kernel Space Using the Kernel Relaxation Procedure (커널 이완절차에 의한 커널 공간의 저밀도 표현 학습)

  • 류재홍;정종철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.60-64
    • /
    • 2001
  • In this paper, a new learning methodology for Kernel Methods is suggested that results in a sparse representation of kernel space from the training patterns for classification problems. Among the traditional algorithms of linear discriminant function(perceptron, relaxation, LMS(least mean squared), pseudoinverse), this paper shows that the relaxation procedure can obtain the maximum margin separating hyperplane of linearly separable pattern classification problem as SVM(Support Vector Machine) classifier does. The original relaxation method gives only the necessary condition of SV patterns. We suggest the sufficient condition to identify the SV patterns in the learning epochs. Experiment results show the new methods have the higher or equivalent performance compared to the conventional approach.

  • PDF

Shock Graph for Representation and Modeling of Posture

  • Tahir, Nooritawati Md.;Hussain, Aini;Abdul Samad, Salina;Husain, Hafizah
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.507-515
    • /
    • 2007
  • Skeleton transform of which the medial axis transform is the most popular has been proposed as a useful shape abstraction tool for the representation and modeling of human posture. This paper explains this proposition with a description of the areas in which skeletons could serve to enable the representation of shapes. We present algorithms for two-dimensional posture modeling using the developed simplified shock graph (SSG). The efficacy of SSG extracted feature vectors as shape descriptors are also evaluated using three different classifiers, namely, decision tree, multilayer perceptron, and support vector machine. The paper concludes with a discussion of the issues involved in using shock graphs to model and classify human postures.

  • PDF