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Skeleton transform of which the medial axis transform  
is the most popular has been proposed as a useful shape 
abstraction tool for the representation and modeling of 
human posture. This paper explains this proposition with 
a description of the areas in which skeletons could serve to 
enable the representation of shapes. We present 
algorithms for two-dimensional posture modeling using 
the developed simplified shock graph (SSG). The efficacy 
of SSG extracted feature vectors as shape descriptors are 
also evaluated using three different classifiers, namely, 
decision tree, multilayer perceptron, and support vector 
machine. The paper concludes with a discussion of the 
issues involved in using shock graphs to model and classify 
human postures. 
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I. Introduction 

Abstraction of shape information is an important 
requirement for any automated or computer assisted 
environment for shape representation and modeling. The level 
of abstraction varies, depending on the task for which the shape 
information is required. Skeleton and medial axes have been 
extensively used for characterizing objects satisfactorily using 
structures that are composed of line or arc patterns. 
Skeletonization is an image processing operation which 
reduces input shapes to axial stick-like representations. It has 
many applications ranging from preprocessing for optical 
character recognition or as a shape descriptor in complete 
object recognition systems. Skeletonization in a plane denotes a 
process that transforms a two-dimensional (2D) object into a 
1D-line representation, comparable to a stick figure.  

For example, a skeleton of a rectangle, drawn based on [1], is 
shown in Fig. 1. It is most important that the skeleton combine 
the information contained in the outline of the shape with 
information about the region circumscribed by the outline. 
Next, it must preserve the initial connectivity of the shape. The 
study of skeletonization is motivated by the need to convert a 
digital image into a linear form in a natural manner. The 
skeleton emphasizes certain properties of the image; for 
 

 

Fig. 1. Both points P and Q are skeletal, but point R 
does not belong to the skeleton (Thick black line 
segments mark the skeleton). 
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instance, curvatures of the contour which correspond to the 
topological properties of the skeleton. Concisely, medial axis 
representation introduces a new quality of shape descriptions, 
in which it encodes important visual cues such as (local) 
diameter and symmetries. Our shape descriptor is somewhat 
similar to shape contexts since both are feature-based. However, 
in this work, our shape descriptors are used directly in classifier 
development without having to find correspondences between 
point sets as described in [2], [3]. 

II. Medial Axis Transform 

The medial axis transform (MAT) is described through a 
medial axis and a radius function. The medial axis (MA), or 
skeleton of set D denoted by M(D), is the locus of points inside 
D, which lies at the centers of all closed discs, which are 
maximal in D, together with the limit points of this locus. A 
closed disc is said to be maximal in a subset D of the 2D space 
if it is contained in D but is not a proper subset of any other disc 
contained in D.   

The radius function of the medial axis of D is a continuous, 
real valued function defined on M(D), whose value at each 
point on the MA is equal to the radius of the associated 
maximal disc or ball. The MAT of D is the MA together with 
its associated radius function. Figure 2 shows the boundary and 
the corresponding MA of an object based on [2], [7], [8]. If the 
boundary segments of the object consist of only points, straight 
line segments, and circular arcs, then the MA segments will be 
one of the conic sections. An important characteristic of the  
 

 

Fig. 2. Boundary of an object and its medial axis. 
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Fig. 3. Medial axis in 2D.  

MAT is that it can be used to simplify the original object and 
retain the original object’s information. The 2D MAT defines a 
unique, coordinate-system-independent decomposition of a 
planar shape into lines. The MA of a figure is, therefore, also 
called the skeleton or symmetric axis of a part or shape. 

Figure 3 gives an illustrative 2D example of how a small 
change in an object’s shape can generate a large change in the 
medial axis based on [1], [7], [8]. 

1. Properties of MAT 

The MAT has the following properties. 

• Uniqueness: There is a unique MA for a given object.  
• Invariant under isometric transformations: Given an 

isometric transformation T, the skeleton of the transformed 
object should be the same as the transformed skeleton of 
the original object. 

• Decomposition (dimensional reduction): The 
dimensionality of an MA is lower than that of its object. A 
2D MAT transforms planar figures into lines. 

• The MAT has no interior. 

2. Applications of Skeleton MAT 

The original application for which MAT was proposed was 
biological shape measurement [1]. Since then, MAT has been 
proposed and used for feature extraction and reduce-model 
formulation. It has played a central role in computer vision and 
shape analysis research. The medial axis is an attractive shape 
feature; however, its high sensitivity to boundary noise hinders its 
use in many applications. A small change in an object’s shape 
can generate a large change in the medial axis, and it will often 
fail to deliver a useful shape descriptor. Boundary smoothing 
represents a routine remedy against noise, but it does not solve 
the problem in general. It is difficult to distinguish a large artifact 
from a salient feature at an early stage of shape analysis. 
Assembly parts or shapes of natural objects are often 
characterized by a rather complex or jagged outline; 
consequently, they yield a great number of spurious branches 
that clutter the skeleton. Therefore, techniques that allow the 
gradual extraction of salient subsets of the medial axis should be 
integrated into every skeletonization algorithm. Many algorithms 
have been developed to extract the skeleton. The straightforward 
procedure to accomplish such a transformation involves an 
iterative process which shrinks the object region step-by-step 
until a one-element thick figure is obtained. 

III. Previous Shock Graph Studies 

Basically, a shock graph is a shape abstraction that 
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decomposes a shape into a set of hierarchically organized 
primitive parts. Shokoufandeh and others [4] combine shock 
graphs with an indexing and matching framework for 
hierarchical structures. Sebastian and others [5] use shock 
graphs to represent 2D shape silhouettes sampled from the 
object’s viewing sphere. The authors, however, propose a 
hierarchical partitioning of the database, in which shapes are 
grouped into categories. A small number of exemplars from 
each category are chosen to represent the grouping, thus 
forming a database of prototypes used to index into the larger 
model database. Cyr and Kimia [6] explore the problem of 
how to partition the view sphere of a 3D object using a 
collection of shock graphs. However, they do not address the 
shock graph indexing problem. They resort instead to a linear 
search of all views in the database in order to recognize an 
object. Inspired by Blum’s original idea of using directed 
graphs to define equivalence classes of shapes, Siddiqi and 
Kimia define the concept of a shock graph [1] as an abstraction 
of the skeleton of a shape onto a directed acyclic graph (DAG).  
The skeleton points are first labeled according to the local 
variation of the radius function at each point. Shock graphs 
have also led to a number of successful silhouette-based 
recognition systems based on graph matching [1], [4]-[12]. A 
careful examination of the shock graph literature shows that most, 
if not all, approaches are typically applied to unoccluded shapes, 
with only a few approaches tested on occluded shapes [1], [4]-
[12]. Shock graph researchers have focused more on shape 
description and matching problems than on the representation or 
modeling of shapes. This paper specifically proposes a technique 
for shape representation and the modeling of human shape. The 
efficacy of the proposed human shape representation technique 
is further tested and subjected to a human posture recognition 
task. Achievement of this task will lead to a broad range of safety 
system applications such as intruder alert systems, pedestrian 
detection, and action recognition for surveillance applications. 

IV. Shock Graph 

In this paper, the aim is to develop a framework to model 
human posture efficiently using shock graphs as our shape 
descriptors. The shock graph of a shape is the medial axis, the 
locus of centers of circles which are at least bitangent to the 
boundary, endowed with dynamic and geometric information. 
Shock graphs are a richer descriptor of shape than the boundary 
by itself. Shock graphs encode information about the interior of 
the shape by pairing shape boundary segments. The shock graph 
has emerged as a powerful, generic shape description possessing 
these properties, and is based on a labeling partitioning of the 
skeleton points (shocks) making up the MAT of a shape.  

Shock graph is an image transform and a thinning algorithm, 

 

Fig. 4. Illustrative example of shock graph extraction: (a) 
original segmented image and (b) its shock graph. 
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which requires an already segmented image. Intuitively, the 
result of this process yields the skeleton of an object, encoding 
in it additional information. For instance, when the algorithm 
processes an image as shown in Fig. 4(a), a shock graph as in 
Fig. 4(b) is produced. Here, the black color serves as an 
indication of the shape of the input object. The white ‘skeletal’ 
line is the shock graph itself. 

Skeletonization on its own is not sufficient to describe a 
shape in a satisfactory way. Blum’s MAT encodes, for every 
point belonging to the skeleton, the shortest distance from that 
point to the object contour. A shock graph is a shape abstraction 
which decomposes a shape into a set of hierarchically 
organized primitive parts. The novel shock graph we propose 
in this work is a human posture representation algorithm, 
which yields a simplified shock graph (SSG). In addition, we 
demonstrate that the framework is effective in classifying 
human posture shapes. Such primitives arise from a labeling of 
the singularities along the medial axis of the shape. 

1. Thinning and Its Application 

Thinning has become a fundamental preprocessing technique 
and was used in many digital image analyses years ago. It has 
been applied in many fields such as inspection of printed circuit 
boards, electrical schematic and logic diagram interpretation, 
classification of fingerprints, recognition of characters, and so on. 
Thinning in image processing and pattern recognition has two 
main advantages. First, the reduction of the amount of data for an 
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input binary image helps decrease the data storage and 
transmission time. Second, the preservation of the fundamental 
skeleton, which is topologically equivalent to the original object, 
facilitates the extraction of fundamental features of the object 
[13]. In general, the thinning algorithm is an iterative edge-point 
erosion technique, where a small window (such as a 3 × 3 
window) is moved over the entire image with a set of rules 
applied to the contents of the windows. 

2. Brief Description of Thinning 

Thinning is a morphological operation, which is used to 
remove selected foreground pixels from binary images, 
somewhat like erosion or opening. It can be used for several 
applications, but is particularly useful for skeletonization [13]. 
In this mode, it is commonly used to tidy up the output of edge 
detectors by reducing all lines to the thickness of a single pixel. 
Thinning, which is normally applied to binary images, 
produces another matchstick-like binary image as an output. 
Like other morphological operators, the thinning operation is 
determined by a structuring element. The thinning operation is 
calculated by translating the origin of the structuring element to 
each possible pixel position in the image, and at each such 
position, comparing it with the underlying image pixels. Figure 
5(a) shows a portion of the skeleton plot prior to thinning, 
while Fig. 5(b) depicts the skeleton plot after thinning. The 
skeleton figures shown are reproduced from [14]. 
 

 

Fig. 5. Portion skeleton plots of (a) pre-thinning and (b) post-
thinning. 
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V. The Proposed SSG Algorithm 

In this work, we implement a skeletonization process based 
on Blum’s skeleton and incorporate the thinning method 
mentioned above. The next stage is the identification of end 
points and intersection points which are present in every region 
of the shock graph. In our proposed SSG, we set a limit of two 
intersection points and four end points. The next subsections 
outline the following algorithms: end point detection procedure, 

intersection point detection procedure, and shape modeling. In 
the last two subsections, we present pruning and the SSG. 

1. End Point Detection 

The algorithm for end point detection in a given skeleton is 
as follows: 

 START 
Extract all skeleton coordinates; 
Set border vector to all eight-sides; 
for 1: length of skeleton coordinates extracted 

select current coordinate to be tested as end point; 
generate eight neighboring pixels around current 
coordinate; 

    for 1: each surrounding pixel 
/* test if any pixels that are on the opposite side of 

the current pixel is/are present */ 
/* check for existence of nearby pixels (immediate 

neighbor) */ 
       if present 
       then this pixel is not an end point pixel; 
       break; 
       else  
       it is an end point; save it; 
       /* repeat loop */  
  end; 
 end; 
/* all terminating points detected */  
STOP  

2. Intersection Point Detection 

For intersection points, detection is performed using the 
following algorithm: 

 START 
 Extract all skeleton coordinates; 
 Create 3 by 3 kernel; 
Convolve kernel with the skeleton; 

 Multiply result of convolution with the original skeleton 
image; 

 Select all pixel values > 3 to be tested as intersection 
points; 

 for 1: length of intersection points to be tested 
select current coordinate to be tested as intersection 

point; 
generate 8 neighboring pixels around current 

coordinate; 
     /* determine if any of result is/are member of 

neighboring pixels */ 
perform Euclidean distance; 
select intersection point;  
store it; 

     /* repeat loop */ 
end; 

/* all intersection point detected */ 
STOP  
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3. Modeling of the Shape 

Once the end points and intersection points are determined, 
the next step is to perform the human posture modeling using 
the following algorithm: 

 START 
Find first intersection point; 
/*searching from top to bottom of the image */ 

first intersection point detected;  
 save it; 
Exclude it from the intersection points detected in 2; 
/* this is the branch point of head of the human posture */ 

Find the protrusions from this intersection point; save
them; 

/*these are the first two end points detected*/ 
Exclude both from the end points detected in 1; 
Find the third and fourth end points at bottom part of the

skeleton; 
perform Euclidean distance; save them; 
Compare end points detected in 1 with all 4 end points

marked as the end points of the skeleton; 
All end points unmarked, prune them; 
Detect second intersection point; save it; 
/*This is the branch point of the lower posture of the
skeleton*/ 

STOP  

4. Pruning and Simplified Shock Graph  

Pruning methods are incorporated in many skeletonization 
and thinning algorithms. Practically, all skeletonization 
algorithms designed for shapes implement some form of 
pruning. The main goal of this paper is to introduce a 
standard framework for pruning, which consists of an 
application specific pruning paradigm. The pruning strategy 
is to delete superfluous axis branches. In this work, the 
pruning hierarchy is obtained as follows: after the detection of 
all four end points of the skeleton shape, the pruning process 
is initiated on every remaining end point detected and 
progresses inwards until it reaches the medial axis of the 
skeleton. As such, our pruning strategy aims to produce a 
simple shock graph comprising of only two intersection 
nodes and four end nodes. This simpler looking shock graph 
is what we term an SSG. The two intersection nodes lie 
within the boundary of the shape, and the end nodes lie on the 
boundary itself. Nevertheless, if both feet are not positioned 
at the same level, the third and fourth end points will be 
detected from the lower foot. 

To model human posture, we extract relative body 
parameters from the SSG. Fig. 6 (a) depicts conventional shock 
graphs of two human postures while Fig. 6(b) shows examples 
of our SSG.  

 

Fig. 6. Human postures models: (a) conventional shock graphs 
and (b) the SSG. 

(a) 

(b) 

 

VI. The Algorithm in Action 

1. SSG for Feature Extraction 

We tested the algorithm with several input images including 
a wide variety of 2D human shapes representing a range of 
postures. Table 1 delineates the systematic procedure using our 
algorithm. In each case, the algorithm determined all four end 
points and two intersection points and preserved them. As can 
be seen in Table 1, end points are represented by circles and 
intersection points by asterisks. In the third column of Table 1, 
the detection of the first end point, second end point, first 
intersection point, and third and forth end points are shown. 
Next is the pruning process of the shock graph, after detection 
of the end points. This is followed by detection of the second 
intersection point. These key points are important structural 
descriptions, which capture the topological information 
embedded in the SSG. Next, a set of body parameters 
comprising three measurements are extracted from the SSG to 
serve as feature vectors. The feature vectors are the distances d1, 
d2, and d3 indicated in Fig. 7. Parameter d1 covers the length 
from the upper intersection node to either of the lower end 
nodes, d2 represents the distance between the upper and lower 
intersection nodes, and d3 is the horizontal distance between the 
two lower end nodes.  

2. SSG Classification  

In this study, the aim is to test the validity of SSGs as feature 
vectors of various postures. We used a collection of 500 images  
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Table 1. Results obtained after each procedure. 

Original image Result after skeletonization Result after detection of 
all end and intersection 
points  

Result after selection of 4 
critical end points and the 
upper intersection point 

Result after prunning and 
detecting the second 
intersection point (SSG) 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7. Feature vectors extracted from the SSG. 
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of various human postures to generate the three feature vectors 
for this study. The various postures include both standing and 
non-standing positions, and the human subjects could be facing 

either to the front or to the side. No restriction was imposed on 
the type of clothing worn but there was a minimum distance 
requirement between the subject and the camera. To estimate the 
classifier generalization error, the training data set was re-
sampled using the k-fold cross-validation method. A k-fold cross-
validation divides the training data into k subsets. Then, k-1 
subsets were used for training, and the remaining subset was 
used as the test data set to predict classification errors. The whole 
process was repeated k times until each individual subset was 
used once [15]. In this study, the classifier performance was 
estimated using a 5-fold cross-validation in which the posture 
data was divided equally into five subsets. Therefore, in each 
fold there were 100 postures in each subset representing the five 
posture classes. The efficacy of the proposed SSGs as feature 
vectors was evaluated using three classifiers namely, 
classification and regression tree (CART), artificial neural 
network (ANN), and support vector machine (SVM).  

Decision tree (DT) classifiers are powerful and popular tools 
used for classification. The DT learning method involves 
approximation of discrete valued functions. It is robust to noisy 
data and is capable of learning disjunctive expressions [16]. 
Typically, it takes a set of known data and induces a DT from 
that data. The tree is then used as a rule set for predicting the 
outcome from known attributes or feature vectors. The initial 
data set, which induces the tree, is known as the training data set. 
The DT takes a top-down form. There is a variety of algorithms 
for building DTs. In this work, we use the CART algorithm. This 
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classifier generally attempts to predict the values of a continuous 
variable from one or more continuous and (or) categorical 
predictor variables. In this study, we want to classify human 
postures using the three feature vectors extracted from the SSGs 
namely d1, d2, and d3.  This dataset contains numerical attributes. 
Therefore, the splitting process is performed by choosing the 
threshold value. It minimizes the impurity measure and is used 
as a splitting criterion. The CART algorithm uses the Gini index 
to measure the class diversity in the nodes of the DT [17] and 
produces five categorical outcomes. To be specific, the categories 
are standing (side view, facing front, or walking) and non-
standing (facing front or side view).  

The second classifier is the ANN. The ANN classifiers are 
well known for their ability to express highly nonlinear decisions. 
This make them appropriate for recognition of complex patterns. 
They also possess the ability to maintain accuracy even when 
some input data is inappropriate and/or inadequate. In this study, 
the feedforward multilayer perceptron (MLP) neural network 
was used as the second classifier to test the efficacy of the 
extracted SSG feature vectors in the human posture recognition 
task. A three-layer NN with weights adjusted using the scaled 
conjugate gradient (SCG) algorithm [18] was trained to learn the 
relationship between SSG features and the respective posture 
class. The MLP had an input layer consisting of three neurons 
corresponding to the input features, one hidden layer and an 
output layer with five neurons to represent the five posture 
classes.  

The SVM, developed by Vapnik [19] as an implementation 
of structural risk minimization (SRM) was also considered. 
The idea behind SRM is that given a sequence of hypothesis 
spaces of increasing complexity, one needs to choose the 
hypothesis space that minimizes the training error. Then from 
this same sequence of hypotheses, one must again choose the 
hypothesis that minimizes the upper bound of the 
generalization error. The SVM approximates the upper bound 
by performing these two tasks simultaneously and by 
controlling the size of the feature weights. This principle 
formulation of weight decay is used in neural networks to 
improve generalization [15]. In terms of geometrical 
interpretation, this is when an SVM chooses the optimal 
separating surface [20] (see [19]). First, the SVM method was 
outlined for the linearly separable case. Kernel functions were 
then introduced to deal with non-linear decision surfaces. 
Finally, for noisy data, slack variables were introduced when 
complete separation of classes cannot be achieved [20], [21]. In 
this study, we applied the multiclass SVM. 

VII. Classification Results 

The extracted SSG feature vectors were used as inputs to the  

 

Fig. 8. Decision tree used for posture recognition. 
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Fig. 9. Accuracy rates at different tree depth levels. The best 
performance is at maximum tree depth. 

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of tree depths 

C
la

ss
fic

at
io

n 
ra

te
 ( 

x1
00

%
) 

 
 
classifiers for validation purposes. Figure 8 displays the 
CART generated with 11 maximum tree depth for classifying 
the five possible outcomes which are the posture positions 
categories, namely, standing oblique (SO), standing facing 
front (SF), non-standing oblique (NO), non-standing facing 
front (NF), and walking (W). The CART algorithm selects all 
three as attributes and picks d1 as the top node in the 
discrimination process. Beginning from the top node, the rule 
of “d1 < 210” classifies the test image attributes accordingly 
into one of the eleven possible leaf nodes. If the top rule is 
satisfied, the decision takes the left path or vice versa. 
Ultimately, a decision is reached when a leaf node assigns the 
test image or observation as NO, NF, SO, SF, or W. In this 
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Table 2. Confusion matrix for posture recognition. 

Predicted category 

DT MLP SVM 
Actual 

category 
NF NO SF SO W NF NO SF SO W NF NO SF SO W 

NF 100 0 0 0 0 98 2 0 0 0 100 0 0 0 0 

NO 0 100 0 0 0 4 96 0 0 0 0 100 0 0 0 

SF 0 0 100 0 0 0 0 100 0 0 0 0 100 0 0 

SO 0 0 0 99 1 0 0 0 100 0 0 0 0 100 0 

W 0 0 1 3 96 0 0 5 6 89 0 0 0 3 97 

 

work, the DT perfectly discriminates between standing and 
non-standing postures. Further discrimination into 5 subsets 
yields 99% efficacy. Figure 9 shows the relationship between 
the classification rate and the number of tree depths used. The 
best classification rate attained was 99% when all tree depths 
were used. At the levels of five and seven tree depths, the 
classification accuracies attained were 90% and 95%, 
respectively. Table 2 tabulates the DT, MLP, and SVM 
classification results. The radial basis function kernel was opted 
in this study, based on [22], [23]. Again, both MLP and SVM 
distinguished well the two main postures of standing and non-
standing as observed in the DT classifier. The MLP achieved 
above a 96% recognition accuracy rate for all categories except 
the walking posture category, for which it only achieved an 
89% recognition rate. The SVM performance was very similar 
to that of the MLP but with higher accuracy. Overall, and as 
expected, the SVM showed the best performance with an 
average recognition rate of 99.4%. One interesting fact is that 
the walking posture was the most difficult to recognize. The 
DT classifier performance was also encouraging with overall 
recognition accuracy of 99%. 

VIII. Conclusion 

We introduced and demonstrated the efficacy of a method 
which uses an SSG to model human posture. We used three 
different classifiers to confirm the efficacy of the extracted SSG 
feature vectors as input features. Based on the classification 
results, it is clear that the SSG-based feature vectors are robust, 
accurate, and computationally efficient. Therefore, the SSG is 
recommended as a feature extraction technique to represent 
human posture in a more compact form than other shape 
descriptors such as the Fourier descriptor.  
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