• Title/Summary/Keyword: vector features

Search Result 998, Processing Time 0.025 seconds

Generation of Transgenic Chickens Regulating hEPO Gene Expression (hEPO 유전자의 발현이 조절되는 형질전환 닭의 생산)

  • Koo, Bon-Chul;Kwon, Mo-Sun;Kim, Te-Oan
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.193-199
    • /
    • 2010
  • We report here the production of transgenic chickens that can regulate human erythropoietin (hEPO) gene expression. The glycoprotein hormone hEPO is an essential for viability and growth of the erythrocytic progenitors. Retrovirus vector system used in this study has two features including tetracycline-controllable promoter and woodchuck hepatitis virus posttranscriptional regulator element (WPRE). The former is for to reduce the possibility of physiological disturbance due to constitutional and unregulated expression of hEPO gene in the transgenic chicken. The latter is for maximum expression of the foreign gene when we turn-on the gene expression. A replication-defective Moloney murine leukemia virus (MoMLV)-based vectors packaged with vesicular stomatitis virus G glycoprotein (VSV-G) was injected beneath the blastoderm of non-incubated chicken embryos (stage X). Out of 325 injected eggs, 28 chicks hatched after 21 days of incubation and 16 hatched chicks were found to express the hEPO gene delivered by the vector. The biological activity of the recombinant hEPO in transgenic chicken serum was comparable to its commercially available counterpart. The recombinant hEPO in transgenic chicken serum had N- and O-linked carbohydrate simillar to that produced from in vitro cultured cells transformed with hEPO gene.

Motion Estimation and Machine Learning-based Wind Turbine Monitoring System (움직임 추정 및 머신 러닝 기반 풍력 발전기 모니터링 시스템)

  • Kim, Byoung-Jin;Cheon, Seong-Pil;Kang, Suk-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.10
    • /
    • pp.1516-1522
    • /
    • 2017
  • We propose a novel monitoring system for diagnosing crack faults of the wind turbine using image information. The proposed method classifies a normal state and a abnormal state for the blade parts of the wind turbine. Specifically, the images are input to the proposed system in various states of wind turbine rotation. according to the blade condition. Then, the video of rotating blades on the wind turbine is divided into several image frames. Motion vectors are estimated using the previous and current images using the motion estimation, and the change of the motion vectors is analyzed according to the blade state. Finally, we determine the final blade state using the Support Vector Machine (SVM) classifier. In SVM, features are constructed using the area information of the blades and the motion vector values. The experimental results showed that the proposed method had high classification performance and its $F_1$ score was 0.9790.

A Parallel-Architecture Processor Design for the Fast Multiplication of Homogeneous Transformation Matrices (Homogeneous Transformation Matrix의 곱셈을 위한 병렬구조 프로세서의 설계)

  • Kwon Do-All;Chung Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.12
    • /
    • pp.723-731
    • /
    • 2005
  • The $4{\times}4$ homogeneous transformation matrix is a compact representation of orientation and position of an object in robotics and computer graphics. A coordinate transformation is accomplished through the successive multiplications of homogeneous matrices, each of which represents the orientation and position of each corresponding link. Thus, for real time control applications in robotics or animation in computer graphics, the fast multiplication of homogeneous matrices is quite demanding. In this paper, a parallel-architecture vector processor is designed for this purpose. The processor has several key features. For the accuracy of computation for real application, the operands of the processors are floating point numbers based on the IEEE Standard 754. For the parallelism and reduction of hardware redundancy, the processor takes column vectors of homogeneous matrices as multiplication unit. To further improve the throughput, the processor structure and its control is based on a pipe-lined structure. Since the designed processor can be used as a special purpose coprocessor in robotics and computer graphics, additionally to special matrix/matrix or matrix/vector multiplication, several other useful instructions for various transformation algorithms are included for wide application of the new design. The suggested instruction set will serve as standard in future processor design for Robotics and Computer Graphics. The design is verified using FPGA implementation. Also a comparative performance improvement of the proposed design is studied compared to a uni-processor approach for possibilities of its real time application.

Poliovirus Sabin 1 as a Live Vaccine Vector: Expression of HIV-1 p24 Core Protein

  • Jung, Hye-Rhan;Bae, Yong-Soo
    • BMB Reports
    • /
    • v.31 no.5
    • /
    • pp.432-443
    • /
    • 1998
  • The poliovirus Sabin 1 strain has features that make it a particularly attractive live recombinant mucosal vaccine vehicle. Sabin 1 cDNA was manipulated to have multiple cloning sites and a viral specific 3C-protease cutting site at the N-terminal end of the polyprotein. The gene for the N-terminal 169 amino acids of the HIV-1 p24 was cloned into the multiple cloning site of the manipulated Sabin cDNA. A recombinant progeny virus was produced from HeLa cells when it was transfected with the RNA synthesized from the p24-Sabin chimeric cDNA. The recombinant progeny virus expresses substantial amounts of the HIV-1 p24 protein, which was clearly detected in the infected cell lysates and culture supernatants in Western blot experiments with rabbit anti-p24 serum and AIDS patients' sera. Differing from the Mahoney strain, the recombinant Sabin 1 poliovirus maintained the foreign gene stably during the subsequent passages. Replication capacity was about 1 to 1.5 log lower than that of the wild-type Sabin 1. Other physicochemical stability characteristics of the recombinant virus were similar to that of the wild-type Sabin 1. These results suggest that the manipulated Sabin 1 poliovirus can be used as a live viral vaccine vector for the development of mucosal vaccines.

  • PDF

Gesture Recognition using MHI Shape Information (MHI의 형태 정보를 이용한 동작 인식)

  • Kim, Sang-Kyoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.4
    • /
    • pp.1-13
    • /
    • 2011
  • In this paper, we propose a gesture recognition system to recognize motions using the shape information of MHI (Motion History Image). The system acquires MHI to provide information on motions from images with input and extracts the gradient images from such MHI for each X and Y coordinate. It extracts the shape information by applying the shape context to each gradient image and uses the extracted pattern information values as the feature values. It recognizes motions by learning and classifying the obtained feature values with a SVM (Support Vector Machine) classifier. The suggested system is able to recognize the motions for multiple people as well as to recognize the direction of movements by using the shape information of MHI. In addition, it shows a high ratio of recognition with a simple method to extract features.

Cavitation Condition Monitoring of Butterfly Valve Using Support Vector Machine (SVM을 이용한 버터플라이 밸브의 캐비테이션 상태감시)

  • 황원우;고명환;양보석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.119-127
    • /
    • 2004
  • Butterfly valves are popularly used in service in the industrial and water works pipeline systems with large diameter because of its lightweight, simple structure and the rapidity of its manipulation. Sometimes cavitation can occur. resulting in noise, vibration and rapid deterioration of the valve trim, and do not allow further operation. Thus, the monitoring of cavitation is of economic interest and is very importance in industry. This paper proposes a condition monitoring scheme using statistical feature evaluation and support vector machine (SVM) to detect the cavitation conditions of butterfly valve which used as a flow control valve at the pumping stations. The stationary features of vibration signals are extracted from statistical moments. The SVMs are trained, and then classify normal and cavitation conditions of control valves. The SVMs with the reorganized feature vectors can distinguish the class of the untrained and untested data. The classification validity of this method is examined by various signals that are acquired from butterfly valves in the pumping stations and compared the classification success rate with those of self-organizing feature map neural network.

Adaptive Switching Median Filter for Impulse Noise Removal Based on Support Vector Machines

  • Lee, Dae-Geun;Park, Min-Jae;Kim, Jeong-Ok;Kim, Do-Yoon;Kim, Dong-Wook;Lim, Dong-Hoon
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.871-886
    • /
    • 2011
  • This paper proposes a powerful SVM-ASM filter, the adaptive switching median(ASM) filter based on support vector machines(SVMs), to effectively reduce impulse noise in corrupted images while preserving image details and features. The proposed SVM-ASM filter is composed of two stages: SVM impulse detection and ASM filtering. SVM impulse detection determines whether the pixels are corrupted by noise or not according to an optimal discrimination function. ASM filtering implements the image filtering with a variable window size to effectively remove the noisy pixels determined by the SVM impulse detection. Experimental results show that the SVM-ASM filter performs significantly better than many other existing filters for denoising impulse noise even in highly corrupted images with regard to noise suppression and detail preservation. The SVM-ASM filter is also extremely robust with respect to various test images and various percentages of image noise.

Automatic Music Summarization Using Similarity Measure Based on Multi-Level Vector Quantization (다중레벨 벡터양자화 기반의 유사도를 이용한 자동 음악요약)

  • Kim, Sung-Tak;Kim, Sang-Ho;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.39-43
    • /
    • 2007
  • Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Support vector machine for prediction of the compressive strength of no-slump concrete

  • Sobhani, J.;Khanzadi, M.;Movahedian, A.H.
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.337-350
    • /
    • 2013
  • The sensitivity of compressive strength of no-slump concrete to its ingredient materials and proportions, necessitate the use of robust models to guarantee both estimation and generalization features. It was known that the problem of compressive strength prediction owes high degree of complexity and uncertainty due to the variable nature of materials, workmanship quality, etc. Moreover, using the chemical and mineral additives, superimposes the problem's complexity. Traditionally this property of concrete is predicted by conventional linear or nonlinear regression models. In general, these models comprise lower accuracy and in most cases they fail to meet the extrapolation accuracy and generalization requirements. Recently, artificial intelligence-based robust systems have been successfully implemented in this area. In this regard, this paper aims to investigate the use of optimized support vector machine (SVM) to predict the compressive strength of no-slump concrete and compare with optimized neural network (ANN). The results showed that after optimization process, both models are applicable for prediction purposes with similar high-qualities of estimation and generalization norms; however, it was indicated that optimization and modeling with SVM is very rapid than ANN models.