Han Deog-Su;Kang Chul-Gyu;Oh Chang-Heon;Cho Sung-Joon
Journal of the Korea Institute of Information and Communication Engineering
/
v.10
no.8
/
pp.1502-1509
/
2006
In this paper, we proposed reliability and capacity enhancement methods for IEEE 802.15.3 HDR-WPAN (High Data Rate-Wireless Personal Area Network) system which is currently getting an interest in home network technology adopting a MIMO technique. We also analyzed performance or the proposed system through a computer simulation. The HDR-WPAN system using V-BLAST algorithm, transmitting the different signal vector to each other's sub-channel, can get the transmission speed of more than 110Mbps using two Tx/Px antenna without bandwidth expansion in TCM-64QAM mode. Also the proposed system has reliability of 104 at $E_b/N_0=35dB$ under the Rayleigh fading channel in case of two Tx/Rx antenna with MMSE algorithm. The HDR-WPAN system adopting V-BLAST method has its drawback which is very complicated to determine the decision-ordering at the receiver. But, the proposed system enhances the transmission capacity and reliability without extra bandwidth expansion by sending data streams to multiple antennas.
Journal of the Korea Institute of Information and Communication Engineering
/
v.21
no.7
/
pp.1306-1312
/
2017
The route request (RREQ) packet is selectively re-broadcasted in the routing protocols that improve the broadcast storm problem of the ad-hoc on-demand routing protocol (AODV). However, in a low node density scenario, the connectivity of these selective rebroadcast schemes becomes less than that of the AODV. In order to clarify the requirements of these selective re-broadcast routing protocols, it is necessary to investigate the relationship between the node density and the connectivity. In this paper, we drive a probability to preserve the connectivity of the GAODV at an intermediate rebroadcast node. In addition, we present an intuitive method to approximate the end-to-end connectivity of the GAODV. We draw the required node density to guarantee the connectivity of 0.9 and 0.99 through computer simulations, and verify the validity of the derived theoritical connectivity by comparing with the simulation results.
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.6
/
pp.1477-1484
/
2015
This paper proposes a robust method for object tracking based on Kalman filters algorithm and covariance matrix. As a feature of the object to be tracked, covariance matrix ensures the continuity of the moving target tracking in the image frames because the covariance is addressed spatial and statistical properties as well as the correlation properties of the features, despite the changes of the form and shape of the target. However, if object moves faster than operation time, real time tracking is difficult. In order to solve the problem, Kalman filters are used to estimate the area of the moving object and covariance matrices as a feature vector are compared with candidate regions within the estimated Kalman window. The results show that the tracking rate of 96.3% achieved using the proposed method.
Recently, high-dimensional index structures have been required for similarity search in such database applications s multimedia database and data warehousing. In this paper, we propose a new cell-based signature tree, called CS-tree, which supports efficient storage and retrieval on high-dimensional feature vectors. The proposed CS-tree partitions a high-dimensional feature space into a group of cells and represents a feature vector as its corresponding cell signature. By using cell signatures rather than real feature vectors, it is possible to reduce the height of our CS-tree, leading to efficient retrieval performance. In addition, we present a similarity search algorithm for efficiently pruning the search space based on cells. Finally, we compare the performance of our CS-tree with that of the X-tree being considered as an efficient high-dimensional index structure, in terms of insertion time, retrieval time for a k-nearest neighbor query, and storage overhead. It is shown from experimental results that our CS-tree is better on retrieval performance than the X-tree.
A mobile ad-hoc network (MANET) is an autonomous, infrastructure-less system that consists of mobile nodes. In MANET, on demand routing protocols are usually used because network topology changes frequently. AODV, which is a representative on demand routing protocol, operates using the routing table of each node that includes next hop of a route for forwarding packets. It maintains the established route if there is not an expiration of route or any link break. In the paper, we propose a partially adaptive route maintenance scheme (AODV-PA) based on AODV, which provides dynamic route modification of initial route for selecting the effective route using not only next hop but also next-hop of next-hop (i.e. 2-hop next node) acquired through route discovery process. In addition, the proposed scheme additionally manages the routing table for preventing exceptional link breaks by route modification using HELLO messages. We use NS 2 for the computer simulation and validate that the proposed scheme is better than general AODV in terms of packet delivery ratio, latency, routing overhead.
In this paper, we present a novel method for local image descriptor called exact order based descriptor (EOD) which is robust to illumination changes and Gaussian noise. Exact orders of image patch is induced by changing discrete intensity value into k-dimensional continuous vector to resolve the ambiguity of ordering for same intensity pixel value. EOD is generated from overall distribution of exact orders in the patch. The proposed local descriptor is compared with several state-of-the-art descriptors over a number of images. Experimental results show that the proposed method outperforms many state-of-the-art descriptors in the presence of illumination changes, blur and viewpoint change. Also, the proposed method can be used for many computer vision applications such as face recognition, texture recognition and image analysis.
Journal of the Korean Society for Nondestructive Testing
/
v.27
no.5
/
pp.383-392
/
2007
In this paper, we study the prediction of depth and width of a defect in steam generator tube in nuclear power plant using neural network. To this end, we first generate eddy current testing (ECT) signals for 4 defect patterns of SG tube: I-In type, I-Out type, V-In type, and V-Out type. In particular, we generate 400 ECT signals for various widths and depths for each defect type by the numerical analysis program based on finite element modeling. From those generated ECT signals, we extract new feature vectors for the prediction of defect size, which include the angle between the two points where the maximum impedance and half the maximum impedance are achieved. Using the extracted feature vector, multi-layer perceptron with one hidden layer is used to predict the size of defects. Through the computer simulation study, it is shown that the proposed method achieves decent prediction performance in terms of maximum error and mean absolute percentage error (MAPE).
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.3
/
pp.229-234
/
2018
Texture is one of the most useful features in classifying and segmenting images. The LBP-based approach previously presented in the literature has been successful in many applications. However, it's theoretical foundation is based only on the difference of pixel values, and consequently it has a number of drawbacks like it performs poorly for the images corrupted with noise, and especially it cannot be used as a multiscale texture descriptor due to the exploding increase of feature vector dimension with increase of the number of neighbor pixels. In this paper, we present a method to address these drawbacks of LBP-based approach. More specifically, our approach quantizes the range of pixels values and construct a 3D histogram which captures the correlative information of pixels. This histogram is used as a texture feature. Several tests with texture images show that the proposed method outperforms the LBP-based approach in the problem of texture classification.
This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.7
/
pp.2633-2648
/
2015
The problem of visual words' synonymy and ambiguity always exist in the conventional bag of visual words (BoVW) model based object category methods. Besides, the noisy visual words, so-called "visual stop-words" will degrade the semantic resolution of visual dictionary. In view of this, a novel bag of visual words method based on PLSA and chi-square model for object category is proposed. Firstly, Probabilistic Latent Semantic Analysis (PLSA) is used to analyze the semantic co-occurrence probability of visual words, infer the latent semantic topics in images, and get the latent topic distributions induced by the words. Secondly, the KL divergence is adopt to measure the semantic distance between visual words, which can get semantically related homoionym. Then, adaptive soft-assignment strategy is combined to realize the soft mapping between SIFT features and some homoionym. Finally, the chi-square model is introduced to eliminate the "visual stop-words" and reconstruct the visual vocabulary histograms. Moreover, SVM (Support Vector Machine) is applied to accomplish object classification. Experimental results indicated that the synonymy and ambiguity problems of visual words can be overcome effectively. The distinguish ability of visual semantic resolution as well as the object classification performance are substantially boosted compared with the traditional methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.