• 제목/요약/키워드: vector average

검색결과 598건 처리시간 0.031초

평균속도 개념을 적용한 상태공간에서의 과도동적응답 해석 (A Transient Dynamic Response Analysis in the State-Space Applying the Average Velocity)

  • 이안성;김병옥;김영철;김영춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.465-470
    • /
    • 2003
  • In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.

  • PDF

Early Termination of Block Vector Search for Fast Encoding of HEVC Screen Content Coding

  • Ma, Jonghyun;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권6호
    • /
    • pp.388-392
    • /
    • 2014
  • This paper proposes an early termination method of a block vector search for fast encoding of high efficiency video coding (HEVC) screen content coding (SCC). In the proposed algorithm, two blocks indicated by two block vector predictors (BVPs) were first employed as an intra block copy (IBC) search. If the sum of absolute difference (SAD) value of the block is less than a threshold defined empirically, an IBC BV search is terminated early. The initial threshold for early termination is derived by statistical analysis and it can be modified adaptively based on a quantization parameter (QP). The proposed algorithm is evaluated on SCM-2.0 under all intra (AI) coding configurations. Experimental results show that the proposed algorithm reduces IBC BV search time by 29.23% on average while the average BD-rate loss is 0.41% under the HEVC SCC common test conditions (CTC).

Phased-in 코드를 이용한 움직임 벡터 예측기의 효율적인 부호화 방법 (Efficient Coding of Motion Vector Predictor using Phased-in Code)

  • 문지희;최정아;호요성
    • 방송공학회논문지
    • /
    • 제15권3호
    • /
    • pp.426-433
    • /
    • 2010
  • H.264/AVC 비디오 압축 표준은 압축 효율을 높이기 위해 다양한 크기의 블록을 사용하여 화면 사이의 움직임 예측을 수행한다. H.264/AVC는 가변적인 블록 크기의 움직임 보상을 통해 세밀한 영역의 움직임까지 예측할 수 있어 잔여 영상을 나타내는 정보량을 효과적으로 줄일 수 있다. 복호를 위해서는 각 블록의 움직임 벡터를 전송해야 하는데, 저비트율 환경에서는 움직임 벡터 정보가 전체 비트스트림의 약 40%를 차지한다. 움직임 벡터 정보량을 줄이기 위해 비디오 부호화 전문가 그룹(VCEG)에서는 다양한 움직임 벡터 예측(Motion Vector Competition) 방법을 제안하였다. 다양한 예측 움직임 벡터를 사용하여 실제 전송해야 할 움직임 벡터 차분값(Motion Vector Difference, MVD)의 크기를 줄이기 때문에 압축 효율을 높일 수 있다. 그러나 다양한 예측 움직임 벡터를 사용하기 때문에 선택된 예측 움직임 벡터의 인덱스 정보를 복호기로 전송해야 한다. 이 논문에서는 인덱스 정보를 효율적으로 전송하기 위해 Phased-in 코드를 기반으로 한 새로운 코드워드 표를 제안했다. 실험을 통해 제안한 방법을 이용하여 동일한 화질에서 평균 약 7.24%의 비트율을 절감할 수 있었고, 동일한 비트율에서는 평균 약 0.36dB의 화질을 향상시킬 수 있었다.

A Prediction of Stock Price Movements Using Support Vector Machines in Indonesia

  • ARDYANTA, Ervandio Irzky;SARI, Hasrini
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.399-407
    • /
    • 2021
  • Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.

Vector space based augmented structural kinematic feature descriptor for human activity recognition in videos

  • Dharmalingam, Sowmiya;Palanisamy, Anandhakumar
    • ETRI Journal
    • /
    • 제40권4호
    • /
    • pp.499-510
    • /
    • 2018
  • A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.

Low-Complexity Design of Quantizers for Distributed Systems

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • 제16권3호
    • /
    • pp.142-147
    • /
    • 2018
  • We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.

Multivariate CUSUM Charts with Correlated Observations

  • 조교영;안영선
    • Journal of the Korean Data and Information Science Society
    • /
    • 제12권1호
    • /
    • pp.127-133
    • /
    • 2001
  • In this article we establish multivariate cumulative sum (CUSUM) control charts based on residual vector with correlated observations. We first find the residual vector and its expectation and variance-covariance matrix and then evaluate the average run length (ARL) of the control charts.

  • PDF

A Novel Automatic Algorithm for Selecting a Target Brain using a Simple Structure Analysis in Talairach Coordinate System

  • Koo B.B.;Lee Jong-Min;Kim June Sic;Kim In Young;Kim Sun I.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권3호
    • /
    • pp.129-132
    • /
    • 2005
  • It is one of the most important issues to determine a target brain image that gives a common coordinate system for a constructing population-based brain atlas. The purpose of this study is to provide a simple and reliable procedure that determines the target brain image among the group based on the inherent structural information of three-dimensional magnetic resonance (MR) images. It uses only 11 lines defined automatically as a feature vector representing structural variations based on the Talairach coordinate system. Average characteristic vector of the group and the difference vectors of each one from the average vector were obtained. Finally, the individual data that had the minimum difference vector was determined as the target. We determined the target brain image by both our algorithm and conventional visual inspection for 20 healthy young volunteers. Eighteen fiducial points were marked independently for each data to evaluate the similarity. Target brain image obtained by our algorithm showed the best result, and the visual inspection determined the second one. We concluded that our method could be used to determine an appropriate target brain image in constructing brain atlases such as disease-specific ones.

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.