In this study, the state-space Newmark method based on average velocity is presented to analyse the transient dynamic response for general dynamic system. The conventional Newmark method based on average acceleration cannot he directly to the first-order state-space differential equations introducing the state-space vector. To overcome this problem, the time-step integration algorithm, based on average velocity concept, suitable for the first-order state-space differential equations is proposed In results, the proposed method has %he numerical stability and order of accuracy, which is proved analytically, equal to those of the conventional Newmark method based on average acceleration. Also, the formulation for numerical solution is very simple and the calculation time Is nearly equal to that of the conventional Newmark method based on average acceleration in spite of an increase of two times over matrix size. This method will be look forward to applying the general dynamic system to calculate the transient dynamic response.
The aim of this paper is to establish a functional central limit theorem for multivariate moving average process generated by negatively associated random vectors under the finite second moments.
IEIE Transactions on Smart Processing and Computing
/
제3권6호
/
pp.388-392
/
2014
This paper proposes an early termination method of a block vector search for fast encoding of high efficiency video coding (HEVC) screen content coding (SCC). In the proposed algorithm, two blocks indicated by two block vector predictors (BVPs) were first employed as an intra block copy (IBC) search. If the sum of absolute difference (SAD) value of the block is less than a threshold defined empirically, an IBC BV search is terminated early. The initial threshold for early termination is derived by statistical analysis and it can be modified adaptively based on a quantization parameter (QP). The proposed algorithm is evaluated on SCM-2.0 under all intra (AI) coding configurations. Experimental results show that the proposed algorithm reduces IBC BV search time by 29.23% on average while the average BD-rate loss is 0.41% under the HEVC SCC common test conditions (CTC).
H.264/AVC 비디오 압축 표준은 압축 효율을 높이기 위해 다양한 크기의 블록을 사용하여 화면 사이의 움직임 예측을 수행한다. H.264/AVC는 가변적인 블록 크기의 움직임 보상을 통해 세밀한 영역의 움직임까지 예측할 수 있어 잔여 영상을 나타내는 정보량을 효과적으로 줄일 수 있다. 복호를 위해서는 각 블록의 움직임 벡터를 전송해야 하는데, 저비트율 환경에서는 움직임 벡터 정보가 전체 비트스트림의 약 40%를 차지한다. 움직임 벡터 정보량을 줄이기 위해 비디오 부호화 전문가 그룹(VCEG)에서는 다양한 움직임 벡터 예측(Motion Vector Competition) 방법을 제안하였다. 다양한 예측 움직임 벡터를 사용하여 실제 전송해야 할 움직임 벡터 차분값(Motion Vector Difference, MVD)의 크기를 줄이기 때문에 압축 효율을 높일 수 있다. 그러나 다양한 예측 움직임 벡터를 사용하기 때문에 선택된 예측 움직임 벡터의 인덱스 정보를 복호기로 전송해야 한다. 이 논문에서는 인덱스 정보를 효율적으로 전송하기 위해 Phased-in 코드를 기반으로 한 새로운 코드워드 표를 제안했다. 실험을 통해 제안한 방법을 이용하여 동일한 화질에서 평균 약 7.24%의 비트율을 절감할 수 있었고, 동일한 비트율에서는 평균 약 0.36dB의 화질을 향상시킬 수 있었다.
The Journal of Asian Finance, Economics and Business
/
제8권8호
/
pp.399-407
/
2021
Stock movement is difficult to predict because it has dynamic characteristics and is influenced by many factors. Even so, there are some approaches to predict stock price movements, namely technical analysis, fundamental analysis, and sentiment analysis. Many researches have tried to predict stock price movement by utilizing these analysis techniques. However, the results obtained are varied and inconsistent depending on the variables and object used. This is because stock price movement is influenced by a variety of factors, and it is likely that those studies did not cover all of them. One of which is that no research considers the use of fundamental analysis in terms of currency exchange rates and the use of foreign stock price index movement related to the technical analysis. This research aims to predict stock price movements in Indonesia based on sentiment analysis, technical analysis, and fundamental analysis using Support Vector Machine. The result obtained has a prediction accuracy rate of 65,33% on an average. The inclusion of currency exchange rate and foreign stock price index movement as a predictor in this research which can increase average prediction accuracy rate by 11.78% compared to the prediction without using these two variables which only results in average prediction accuracy rate of 53.55%.
A vector space based augmented structural kinematic (VSASK) feature descriptor is proposed for human activity recognition. An action descriptor is built by integrating the structural and kinematic properties of the actor using vector space based augmented matrix representation. Using the local or global information separately may not provide sufficient action characteristics. The proposed action descriptor combines both the local (pose) and global (position and velocity) features using augmented matrix schema and thereby increases the robustness of the descriptor. A multiclass support vector machine (SVM) is used to learn each action descriptor for the corresponding activity classification and understanding. The performance of the proposed descriptor is experimentally analyzed using the Weizmann and KTH datasets. The average recognition rate for the Weizmann and KTH datasets is 100% and 99.89%, respectively. The computational time for the proposed descriptor learning is 0.003 seconds, which is an improvement of approximately 1.4% over the existing methods.
Journal of information and communication convergence engineering
/
제16권3호
/
pp.142-147
/
2018
We present a practical design algorithm for quantizers at nodes in distributed systems in which each local measurement is quantized without communication between nodes and transmitted to a fusion node that conducts estimation of the parameter of interest. The benefits of vector quantization (VQ) motivate us to incorporate the VQ strategy into our design and we propose a low-complexity design technique that seeks to assign vector codewords into sets such that each codeword in the sets should be closest to its associated local codeword. In doing so, we introduce new distance metrics to measure the distance between vector codewords and local ones and construct the sets of vector codewords at each node to minimize the average distance, resulting in an efficient and independent encoding of the vector codewords. Through extensive experiments, we show that the proposed algorithm can maintain comparable performance with a substantially reduced design complexity.
Journal of the Korean Data and Information Science Society
/
제12권1호
/
pp.127-133
/
2001
In this article we establish multivariate cumulative sum (CUSUM) control charts based on residual vector with correlated observations. We first find the residual vector and its expectation and variance-covariance matrix and then evaluate the average run length (ARL) of the control charts.
Koo B.B.;Lee Jong-Min;Kim June Sic;Kim In Young;Kim Sun I.
대한의용생체공학회:의공학회지
/
제26권3호
/
pp.129-132
/
2005
It is one of the most important issues to determine a target brain image that gives a common coordinate system for a constructing population-based brain atlas. The purpose of this study is to provide a simple and reliable procedure that determines the target brain image among the group based on the inherent structural information of three-dimensional magnetic resonance (MR) images. It uses only 11 lines defined automatically as a feature vector representing structural variations based on the Talairach coordinate system. Average characteristic vector of the group and the difference vectors of each one from the average vector were obtained. Finally, the individual data that had the minimum difference vector was determined as the target. We determined the target brain image by both our algorithm and conventional visual inspection for 20 healthy young volunteers. Eighteen fiducial points were marked independently for each data to evaluate the similarity. Target brain image obtained by our algorithm showed the best result, and the visual inspection determined the second one. We concluded that our method could be used to determine an appropriate target brain image in constructing brain atlases such as disease-specific ones.
Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.