• Title/Summary/Keyword: vector algorithm

Search Result 3,108, Processing Time 0.028 seconds

Two Factor Face Authentication Scheme with Cancelable Feature (두 가지 보안 요소를 사용하는 취소 가능한 얼굴 인증 기술)

  • Kang, Jeon-Il;Lee, Kyung-Hee;Nyang, Dae-Hun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2006
  • Though authentication using biometric techniques has conveniences for people, security problems like the leakage of personal bio-information would be serious. Even if cancelable biometric is a good solution for the problems, only a few biometric authentication scheme with cancelable feature has been published. In this paper, we suggest a face authentication scheme with two security factors: password and face image. Using matching algorithm in the permuted domain, our scheme is designed to be cancelable in the sense that templates that is composed of permutation and weight vector can be changed freely.

Urdu News Classification using Application of Machine Learning Algorithms on News Headline

  • Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.229-237
    • /
    • 2021
  • Our modern 'information-hungry' age demands delivery of information at unprecedented fast rates. Timely delivery of noteworthy information about recent events can help people from different segments of life in number of ways. As world has become global village, the flow of news in terms of volume and speed demands involvement of machines to help humans to handle the enormous data. News are presented to public in forms of video, audio, image and text. News text available on internet is a source of knowledge for billions of internet users. Urdu language is spoken and understood by millions of people from Indian subcontinent. Availability of online Urdu news enable this branch of humanity to improve their understandings of the world and make their decisions. This paper uses available online Urdu news data to train machines to automatically categorize provided news. Various machine learning algorithms were used on news headline for training purpose and the results demonstrate that Bernoulli Naïve Bayes (Bernoulli NB) and Multinomial Naïve Bayes (Multinomial NB) algorithm outperformed other algorithms in terms of all performance parameters. The maximum level of accuracy achieved for the dataset was 94.278% by multinomial NB classifier followed by Bernoulli NB classifier with accuracy of 94.274% when Urdu stop words were removed from dataset. The results suggest that short text of headlines of news can be used as an input for text categorization process.

An Intelligent Framework for Feature Detection and Health Recommendation System of Diseases

  • Mavaluru, Dinesh
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.177-184
    • /
    • 2021
  • All over the world, people are affected by many chronic diseases and medical practitioners are working hard to find out the symptoms and remedies for the diseases. Many researchers focus on the feature detection of the disease and trying to get a better health recommendation system. It is necessary to detect the features automatically to provide the most relevant solution for the disease. This research gives the framework of Health Recommendation System (HRS) for identification of relevant and non-redundant features in the dataset for prediction and recommendation of diseases. This system consists of three phases such as Pre-processing, Feature Selection and Performance evaluation. It supports for handling of missing and noisy data using the proposed Imputation of missing data and noise detection based Pre-processing algorithm (IMDNDP). The selection of features from the pre-processed dataset is performed by proposed ensemble-based feature selection using an expert's knowledge (EFS-EK). It is very difficult to detect and monitor the diseases manually and also needs the expertise in the field so that process becomes time consuming. Finally, the prediction and recommendation can be done using Support Vector Machine (SVM) and rule-based approaches.

Localization and size estimation for breaks in nuclear power plants

  • Lin, Ting-Han;Chen, Ching;Wu, Shun-Chi;Wang, Te-Chuan;Ferng, Yuh-Ming
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.193-206
    • /
    • 2022
  • Several algorithms for nuclear power plant (NPP) break event detection, isolation, localization, and size estimation are proposed. A break event can be promptly detected and isolated after its occurrence by simultaneously monitoring changes in the sensing readings and by employing an interquartile range-based isolation scheme. By considering the multi-sensor data block of a break to be rank-one, it can be located as the position whose lead field vector is most orthogonal to the noise subspace of that data block using the Multiple Signal Classification (MUSIC) algorithm. Owing to the flexibility of deep neural networks in selecting the best regression model for the available data, we can estimate the break size using multiple-sensor recordings of the break regardless of the sensor types. The efficacy of the proposed algorithms was evaluated using the data generated by Maanshan NPP simulator. The experimental results demonstrated that the MUSIC method could distinguish two near breaks. However, if the two breaks were close and of small sizes, the MUSIC method might wrongly locate them. The break sizes estimated by the proposed deep learning model were close to their actual values, but relative errors of more than 8% were seen while estimating small breaks' sizes.

Model-based Analysis of Cell-to-Cell Imbalance Characteristic Parameters in the Battery Pack for Fault Diagnosis and Over-discharge Prognosis (배터리 팩 내부 과방전 사전 진단을 위한 모델기반 셀 간 불균형 특성 파라미터 분석 연구)

  • Park, Jinhyeong;Kim, Jaewon;Lee, Miyoung;Kim, Byoung-Choul;Jung, Sung-Chul;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.381-389
    • /
    • 2021
  • Most diagnosis approaches rely on historical failure data that might not be feasible in real operating conditions because the battery voltage and internal parameters are nonlinear according to various operating conditions, such as cell-to-cell configuration and initial condition. To overcome this issue, the estimator and the predictor require integrated approaches that consider comprehensive data, with the degradation process and measured data taken into account. In this paper, vector autoregressive models (VAR) with various parameters that affect overdischarge to the cell in the battery pack were constructed, and the cell-to-cell parameters were identified using an adaptive model to analyze the influence of failure prognosis. The theoretical analysis is validated using experimental results in terms of the feasibility and advantages of fault prognosis.

Development of rapid control prototyping for a PMSM drive system using DSPs and PLECS (DSP 및 PLECS를 활용한 PMSM 구동시스템용 고속 제어 시제품개발 기법 개발)

  • Lee, Jooyoung;Choi, Sung-Min;Kim, Sehwan;Lee, Jae Suk
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.280-286
    • /
    • 2022
  • This paper presents implementation of rapid control prototype (RCP) for permanent magnet synchronous machines (PMSMs) using a digital signal processor (DSP) and the PLECS software. By utilization of auto code generation function in the PLECS, a current vector control algorithm for a PMSM drive system using a DSP as a control processor can be developed more efficiently. In this paper, a background of a model based design (MBD) and real time control are reviewed. Also, commercial RCP products compatible with DSP boards are introduced. At the end of the paper, experimental implementation of RCP for a PMSM drive is presented.

An Efficient Machine Learning-based Text Summarization in the Malayalam Language

  • P Haroon, Rosna;Gafur M, Abdul;Nisha U, Barakkath
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1778-1799
    • /
    • 2022
  • Automatic text summarization is a procedure that packs enormous content into a more limited book that incorporates significant data. Malayalam is one of the toughest languages utilized in certain areas of India, most normally in Kerala and in Lakshadweep. Natural language processing in the Malayalam language is relatively low due to the complexity of the language as well as the scarcity of available resources. In this paper, a way is proposed to deal with the text summarization process in Malayalam documents by training a model based on the Support Vector Machine classification algorithm. Different features of the text are taken into account for training the machine so that the system can output the most important data from the input text. The classifier can classify the most important, important, average, and least significant sentences into separate classes and based on this, the machine will be able to create a summary of the input document. The user can select a compression ratio so that the system will output that much fraction of the summary. The model performance is measured by using different genres of Malayalam documents as well as documents from the same domain. The model is evaluated by considering content evaluation measures precision, recall, F score, and relative utility. Obtained precision and recall value shows that the model is trustable and found to be more relevant compared to the other summarizers.

Multi-gene genetic programming for the prediction of the compressive strength of concrete mixtures

  • Ghahremani, Behzad;Rizzo, Piervincenzo
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.225-236
    • /
    • 2022
  • In this article, Multi-Gene Genetic Programming (MGGP) is proposed for the estimation of the compressive strength of concrete. MGGP is known to be a powerful algorithm able to find a relationship between certain input space features and a desired output vector. With respect to most conventional machine learning algorithms, which are often used as "black boxes" that do not provide a mathematical formulation of the output-input relationship, MGGP is able to identify a closed-form formula for the input-output relationship. In the study presented in this article, MGPP was used to predict the compressive strength of plain concrete, concrete with fly ash, and concrete with furnace slag. A formula was extracted for each mixture and the performance and the accuracy of the predictions were compared to the results of Artificial Neural Network (ANN) and Extreme Learning Machine (ELM) algorithms, which are conventional and well-established machine learning techniques. The results of the study showed that MGGP can achieve a desirable performance, as the coefficients of determination for plain concrete, concrete with ash, and concrete with slag from the testing phase were equal to 0.928, 0.906, 0.890, respectively. In addition, it was found that MGGP outperforms ELM in all cases and its' accuracy is slightly less than ANN's accuracy. However, MGGP models are practical and easy-to-use since they extract closed-form formulas that may be implemented and used for the prediction of compressive strength.

Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.874-890
    • /
    • 2021
  • With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.