• Title/Summary/Keyword: vascular smooth muscle cells

Search Result 267, Processing Time 0.025 seconds

Inhibitory Effect of Rat Aortic Vascular Smooth Muscle Cell Proliferation by Luteolin

  • Kim, Jin-Ho;Kim, Soo-Yeon;Lim, Yong;Park, Byeoung-Soo;Pyo, Hyeong-Bae;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.136.2-137
    • /
    • 2003
  • It was previously reported that luteolin, a flavone compound, displayed the potent anti-oxidant and anti-inflammatory effects, which have also been successful in reducing vascular smooth muscle cells(VSMCs) proliferation after arterial injury. Proliferation of VSMCs plays an important role in development of astherosclerosis. In this study, a possible anti-proliferative effect and its mechanism on rat aortic VSMCs by luteolin was investigated. (omitted)

  • PDF

Comparative Study of the Inhibitory Effect of Luteolin and Luteolin-7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Jin-Ho;Kim, Soo-Yeon;Lim, Yong;Pyo, Hyeong-Bae;Park, Byeoung-Soo;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.102.2-103
    • /
    • 2003
  • It has been previously reported that luteolin and luteolin-7-glucoside displayed the potent anti-oxidant and anti-inflammatory effects, which have also been successful in reducing vascular smooth muscle cells(VSMCs) proliferation. In this study, a possible anti-proliferative effect and its mechanism on rat aortic VSMCs by luteolin and luteolin-7-glucoside were investigated. Luteolin significantly inhibited the platelet-derived growth factor(PDGF)-BB-induced proliferation of rat aortic VSMCs. While luteolin-7-glucoside weakly inhibited the proliferation. (omitted)

  • PDF

Role of LPS-activated Macrophages in the Differentiation of Mesenchymal Stem Cells into Smooth Muscle Cells (중간엽 줄기세포의 평활근 세포로의 분화에서 LPS에 의해 활성화된 대식세포의 역할)

  • Lee, Mi Jeong;Do, Eun Kyoung;Kim, Jae Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.137-142
    • /
    • 2013
  • Human adipose-derived mesenchymal stem cells (hMSCs) are highly useful for vascular regeneration of injured or inflamed tissue. Lipopolysaccharide (LPS) is a potent activator of macrophages and stimulates macrophages to release inflammatory cytokines. In the present study, we explored the role of LPS-activated macrophages in the differentiation of hMSCs to smooth muscle cells (SMCs). We demonstrated that conditioned medium from LPS-induced macrophages (LPS CM) stimulates differentiation of hMSCs to SMCs, as evidenced by increased expression of smooth muscle-specific markers, including alpha-smooth muscle actin (${\alpha}$-SMA), smooth muscle-myosin heavy chain, and calponin. LPS induced the secretion of $PGF2{\alpha}$ from macrophages, and $PGF2{\alpha}$ treatment stimulated expression levels of SMC-specific markers in hMSCs. Furthermore, small interfering RNA-mediated silencing of the $PGF2{\alpha}$ receptor inhibited LPS CM-stimulated ${\alpha}$-SMA expression. These results suggest that LPS-activated macrophages promote differentiation of hMSCs to SMCs through a $PGF2{\alpha}$-dependent mechanism.

Effect of Heme Oxygenase Induction by NO Donor on the Aortic Contractility

  • Kim, Chang-Kyun;Sohn, Uy-Dong;Lee, Seok-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Carbon monoxide (CO) binds to soluble guanylate cyclase to lead its activation and elicits smooth muscle relaxation. The vascular tissues have a high capacity to produce CO, since heme oxygenase-2 (HO-2) is constitutively expressed in endothelial and smooth muscle cells, and HO-1 can be greatly up-regulated by oxidative stress. Moreover, the substrate of HO, heme, is readily available for catalysis in vascular tissue. Although the activation of heme oxygenase pathway under various stress conditions may provide a defence mechanism in compromised tissues, the specific role of HO-1-derived CO in the control of aortic contractility still remains to be elucidated. The present study was done to determine the effect of HO-1 induction on the aortic contractility. Thus, the effects of incubation of aortic tissue with S-nitroso-N-acetylpenicillamine (SNAP) for 1 hr on the aortic contractile response to phenylephrine were studied. The preincubation with SNAP resulted in depression of the vasoconstrictor response to phenylephrine. This effect was restored by HO inhibitor or methylene blue but not by NOS inhibitor. The attenuation of vascular reactivity by preincubation with SNAP was also revealed in endothelium-free rings. $AlF4^--evoked$ contraction in control did not differ from that in SNP-treated group. These results suggest that increased production of CO was responsible for the reduction of the contractile response to phenylephrine in aortic ring preincubated with SNAP and this effect of SNAP was independent on endothelium.

  • PDF

Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches (쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향)

  • Choi, Soo-Seung
    • Journal of Chest Surgery
    • /
    • v.43 no.4
    • /
    • pp.345-355
    • /
    • 2010
  • Background: Extracellular and intracellular pH ($pH_o$ and $pH_i$), which can be changed in various pathological conditions such as hypoxia, affects vascular contractility. To elucidate the mechanism to alter vascular contractility by pH, the effects of pH on reactivity to vasocontracting agents, intracellular $Ca^{2+}$ influx, and $Ca^{2+}$ sensitivity in vascular smooth muscle were examined. Material and Method: Isometric contractions in rat superior mesenteric arteries (SMA) were observed. Intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) was recorded by microfluorometer using Fura-2/acetoxylmethyl ester in muscle cells. $pH_o$ was increased from 7.4 to 7.8 or decreased to 6.9 or 6.4. $pH_i$ was decreased by applying $NH_4^+$ or propionic acid or modulated by changing $pH_o$ after increasing membrane permeability using $\beta$-escin. Result: Decreases in $pH_o$ from 7.4 to 6.9 or 6.4 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the right and significantly increased half maximal effective concentration (EC50) to NE or SE. Increase in $pH_o$ from 7.4 to 7.8 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the left and significantly reduced EC50 to NE or SE. NE increased $[Ca^{2+}]_i$ in cultured smooth muscle cells from SMA and the increased $[Ca^{2+}]_i$ was reduced by decreases in $pH_o$. NE-induced contraction was inhibited by $NH_4^+$, whereas the resting tension was increased by $NH_4^+$ or propionic acid. When the cell membrane of SMA was permeabilized using ${\beta}$-escin, SMA was contracted by increasing extracellular $Ca^{2+}$ concentration from 0 to $10{\mu}M$ and the magnitude of contraction was decreased by a decrease in $pH_o$ and vice versa. Conclusion: From these results, it can be concluded that a decrease in $pH_o$ might inhibit vascular contraction by reducing the reactivity of vascular smooth muscle to vasoactive agents, $Ca^{2+}$ influx and the sensitivity of vascular smooth muscle to $Ca^{2+}$.

Vascular Smooth Muscle Cells Secrete CXCL10 in Response to Heat Shock Protein 90 (혈관평활근세포에서 HSP90에 의한 CXCL10 증가에 관여하는 인자에 대한 연구)

  • Rhim, Byung-Yong;Kim, Do-Hyung;Kim, Koan-Hoi
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.664-670
    • /
    • 2011
  • Oxidative stress results in sustained release of heat shock protein 90 (HSP90) from vascular smooth muscle cells (VSMCs). We investigated whether extracellular HSP90 predisposed VSMCs to pro-inflammatory phenotype. Exposure of human aortic smooth muscle cells to HSP90 not only significantly enhanced CXCL10 secretion but also increased CXCL10 transcription. HSP90-mediated CXCL10 secretion was attenuated by OxPAPC, a TLR-2/4 inhibitor, and curcumin, a TLR-4 dimerization inhibitor. Inhibitors of diphenyleneiodium chloride and the Akt pathway also attenuated CXCL10 secretion in response to HSP90. The gene delivery of I${\kappa}$B using recombinant adenoviruses and treatment with resveratrol, which inhibit NF-${\kappa}$B activity, significantly attenuated HSP90-induced CXCL10 secretion from VSMCs. We propose that extracellular HSP90 contributes to an inflammatory reaction in the stressed vasculature by inducing CXCL10 expression of VSMCs, and that TLR-4, Akt, and NF-${\kappa}$B play active roles in the process.

Downregulation of Angiotensin II-Induced 12-Lipoxygenase Expression and Cell Proliferation in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats by CCL5

  • Kim, Jung-Hae;Kim, Hee-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.385-392
    • /
    • 2009
  • Angiotensin II (Ang II) plays an important role in vascular hypertension. The role of the chemokine CCL5 on Ang II-induced activities in vascular smooth muscle cells (VSMCs) has not been studied. In this study, we elucidated the effect of CCL5 on Ang II-induced 12-lipoxygenase (LO) expression and cell proliferation in spontaneously hypertensive rats (SHR) VSMCs. CCL5 decreased Ang II-induced 12-LO mRNA expression and protein production, and it increased Ang II type 2 ($AT_2$) receptor expression in SHR VSMCs. The inhibitory effect of CCL5 on Ang II-induced 12-LO mRNA expression was mediated through the $AT_2$ receptor. Although treatment of CCL5 alone induced SHR VSMCs proliferation, CCL5 inhibited Ang II-induced VSMCs proliferation and PD123,319, an $AT_2$ receptor antagonist, blocked the inhibitory effect of CCL5 on Ang II-induced VSMCs proliferation. Phosphorylation of p38 was detected in VSMCs treated with Ang II or CCL5 alone. But, decrease of p38 phosphorylation was detected in VSMCs treated with Ang II and CCL5 simultaneously (Ang II/CCL5) and PD123,319 increased p38 phosphorylation in VSMCs treated with Ang II/CCL5. Therefore, these results suggest that the inhibitory effect of CCL5 on Ang II-induced VSMCs proliferation is mediated by the $AT_2$ receptor via p38 inactivation, and CCL5 may play a beneficial role in Ang II-induced vascular hypertension.

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation

  • Hu, JiSheng;Pi, ShangJing;Xiong, MingRui;Liu, ZhongYing;Huang, Xia;An, Ran;Zhang, TongCun;Yuan, BaiYin
    • Molecules and Cells
    • /
    • v.43 no.8
    • /
    • pp.749-762
    • /
    • 2020
  • The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.

Role of Nitric Oxide Produced During Endotoxic Shock in Sympathetic Nervous Function (Endotoxin에 의해 생성된 혈관의 nitric oxide가 교감신경계에 미치는 영향)

  • 박관하
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • Endotoxic shock causes death in humans and animals via extreme hypoperfusion of peripheral organs. A massive production of nitric oxide (NO) both from the endothelical cells and smooth muscle cells has been proposed as a possible mechanism in this process. Since NO attenuated the contractility to vasoconstricting agents such as norepinephrine (NE) by directly acting on the smooth muscle cells, this mechanism was considered mainly as a postsynaptic mechanism. In this research it was investigated whether NO, thus released, also participates in the presynaptic events for the regulation of vascular tone in endotoxic shock. The role of NO was studied by adding NO donors or NO synthase inhibitor $N^\omega $methyl-L-arginine (NMA) in stimulated sympathetic nerves of the mesenteric vascular bed and the Langendorff heart of rats. Sodium nitroprusside (SNP), an NO donor, reduced the pressor responses of isolated mesenteric artery either to electrical stimulation or exogenously administered phenylephrine (PE). In this mesentery, although neither agent influenced NE release, in the presence of the adrenergic $\alpha_2$-receptor antagonist yohimbine, elecrical stimulation-evoked NE release was augumented by SNP. In the heart SNP facilitated the NE release induced by electrical stimulation, while NMA had no effect. From these results it is proposed that there exists a local reflex phenomenon in the junction between the sympathetic nerve terminals and the smooth muscle of resistance blood vessels; by which sympathetic responses are reduced by NO at the postjunctional level while NO facilitates NE release contributing to augumentation of sympathetic tone. All these facts suggest that NO produced during endotoxic shock has dual effects: whereas NO blunts the vasoconstrictive activity of NE at the postsynaptic level, NO presynaptically facilitates the release of NE from sympathetic nerve terminals.

  • PDF