Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0085

WD Repeat Domain 1 Deficiency Inhibits Neointima Formation in Mice Carotid Artery by Modulation of Smooth Muscle Cell Migration and Proliferation  

Hu, JiSheng (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Pi, ShangJing (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Xiong, MingRui (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Liu, ZhongYing (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Huang, Xia (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
An, Ran (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Zhang, TongCun (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Yuan, BaiYin (Institute of Biology and Medicine, College of Life Science and Health, Wuhan University of Science and Technology)
Abstract
The migration, dedifferentiation, and proliferation of vascular smooth muscle cells (VSMCs) are responsible for intimal hyperplasia, but the mechanism of this process has not been elucidated. WD repeat domain 1 (WDR1) promotes actin-depolymerizing factor (ADF)/cofilin-mediated depolymerization of actin filaments (F-actin). The role of WDR1 in neointima formation and progression is still unknown. A model of intimal thickening was constructed by ligating the left common carotid artery in Wdr1 deletion mice, and H&E staining showed that Wdr1 deficiency significantly inhibits neointima formation. We also report that STAT3 promotes the proliferation and migration of VSMCs by directly promoting WDR1 transcription. Mechanistically, we clarified that WDR1 promotes the proliferation and migration of VSMCs and neointima formation is regulated by the activation of the JAK2/STAT3/WDR1 axis.
Keywords
migration; neointima formation; proliferation; vascular smooth muscle cells; WD repeat domain 1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kou, X., Qi, S., Dai, W., Luo, L., and Yin, Z. (2011). Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int. Immunopharmacol. 11, 1095-1102.   DOI
2 Zhang, L., Shao, J., Zhou, Y., Chen, H., Qi, H., Wang, Y., Chen, L., Zhu, Y., Zhang, M., Chen, L., et al. (2018). Inhibition of PDGF-BB-induced proliferation and migration in VSMCs by proanthocyanidin A2:Involvement of KDR and Jak-2/STAT-3/cPLA2 signaling pathways. Biomed. Pharmacother. 98, 847-855.   DOI
3 Zhang, S.M., Zhu, L.H., Chen, H.Z., Zhang, R., Zhang, P., Jiang, D.S., Gao, L., Tian, S., Wang, L., Zhang, Y., et al. (2014). Interferon regulatory factor 9 is critical for neointima formation following vascular injury. Nat. Commun. 5, 5160.   DOI
4 Zulkifli, A.A., Tan, F.H., Putoczki, T.L., Stylli, S.S., and Luwor, R.B. (2017). STAT3 signaling mediates tumour resistance to EGFR targeted therapeutics. Mol. Cell. Endocrinol. 451, 15-23.   DOI
5 Kovacic, J.C., Gupta, R., Lee, A.C., Ma, M., Fang, F., Tolbert, C.N., Walts, A.D., Beltran, L.E., San, H., Chen, G., et al. (2010). Stat3-dependent acute Rantes production in vascular smooth muscle cells modulates inflammation following arterial injury in mice. J. Clin. Invest. 120, 303-314.   DOI
6 Kumar, A. and Lindner, V. (1997). Remodeling with neointima formation in the mouse carotid artery after cessation of blood flow. Arterioscler. Thromb. Vasc. Biol. 17, 2238-2244.   DOI
7 Lee, J.H., Kim, J.E., Kim, B.G., Han, H.H., Kang, S., and Cho, N.H. (2016). STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell. Signal. 28, 1753-1760.   DOI
8 Lee, S.H. and Dominguez, R. (2010). Regulation of actin cytoskeleton dynamics in cells. Mol. Cells 29, 311-325.   DOI
9 Li, Y.L., Ding, K., Hu, X., Wu, L.W., Zhou, D.M., Rao, M.J., Lin, N.M., and Zhang, C. (2019). DYRK1A inhibition suppresses STAT3/EGFR/Met signalling and sensitizes EGFR wild-type NSCLC cells to AZD9291. J. Cell. Mol. Med. 23, 7427-7437.   DOI
10 Limagne, E., Thibaudin, M., Euvrard, R., Berger, H., Chalons, P., Vegan, F., Humblin, E., Boidot, R., Rebe, C., Derangere, V., et al. (2017). Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep. 19, 746-759.   DOI
11 Owens, G.K., Kumar, M.S., and Wamhoff, B.R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 84, 767-801.   DOI
12 Marrero, M.B., Schieffer, B., Li, B., Sun, J., Harp, J.B., and Ling, B.N. (1997). Role of Janus kinase/signal transducer and activator of transcription and mitogen-activated protein kinase cascades in angiotensin II- and plateletderived growth factor-induced vascular smooth muscle cell proliferation. J. Biol. Chem. 272, 24684-24690.   DOI
13 Marx, S.O. and Marks, A.R. (2001). Bench to bedside: the development of rapamycin and its application to stent restenosis. Circulation 104, 852-855.   DOI
14 Minakhina, S., Myers, R., Druzhinina, M., and Steward, R. (2005). Crosstalk between the actin cytoskeleton and Ran-mediated nuclear transport. BMC Cell Biol. 6, 32.   DOI
15 Ni, Z., Deng, J., Potter, C.M.F., Nowak, W.N., Gu, W., Zhang, Z., Chen, T., Chen, Q., Hu, Y., Zhou, B., et al. (2019). Recipient c-Kit lineage cells repopulate smooth muscle cells of transplant arteriosclerosis in mouse models. Circ. Res. 125, 223-241.   DOI
16 O'Brien, E.R., Ma, X., Simard, T., Pourdjabbar, A., and Hibbert, B. (2011). Pathogenesis of neointima formation following vascular injury. Cardiovasc. Hematol. Disord. Drug Targets 11, 30-39.   DOI
17 Seki, Y., Kai, H., Shibata, R., Nagata, T., Yasukawa, H., Yoshimura, A., and Imaizumi, T. (2000). Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury. Circ. Res. 87, 12-18.   DOI
18 Allahverdian, S., Chaabane, C., Boukais, K., Francis, G.A., and Bochaton-Piallat, M.L. (2018). Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc. Res. 114, 540-550.   DOI
19 Qi, Z., Qi, S., Ling, L., Lv, J., and Feng, Z. (2016). Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. Int. Immunopharmacol. 35, 265-271.   DOI
20 Schwartz, S.M., deBlois, D., and O'Brien, E.R. (1995). The intima. Soil for atherosclerosis and restenosis. Circ. Res. 77, 445-465.   DOI
21 Souissi, I., Najjar, I., Ah-Koon, L., Schischmanoff, P.O., Lesage, D., Le Coquil, S., Roger, C., Dusanter-Fourt, I., Varin-Blank, N., Cao, A., et al. (2011). A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-kappaB. BMC Cell Biol. 12, 14.   DOI
22 Chang, Q., Bournazou, E., Sansone, P., Berishaj, M., Gao, S.P., Daly, L., Wels, J., Theilen, T., Granitto, S., Zhang, X., et al. (2013). The IL-6/JAK/Stat3 feedforward loop drives tumorigenesis and metastasis. Neoplasia 15, 848-862.   DOI
23 Bamburg, J.R. (1999). Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15, 185-230.   DOI
24 Bravo-Cordero, J.J., Magalhaes, M.A., Eddy, R.J., Hodgson, L., and Condeelis, J. (2013). Functions of cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell Biol. 14, 405-415.   DOI
25 Cervero, P., Himmel, M., Kruger, M., and Linder, S. (2012). Proteomic analysis of podosome fractions from macrophages reveals similarities to spreading initiation centres. Eur. J. Cell Biol. 91, 908-922.   DOI
26 Cimica, V., Chen, H.C., Iyer, J.K., and Reich, N.C. (2011). Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS One 6, e20188.   DOI
27 Collazo, J., Zhu, B., Larkin, S., Martin, S.K., Pu, H., Horbinski, C., Koochekpour, S., and Kyprianou, N. (2014). Cofilin drives cell-invasive and metastatic responses to TGF-beta in prostate cancer. Cancer Res. 74, 2362-2373.   DOI
28 Cooper, J.A. and Schafer, D.A. (2000). Control of actin assembly and disassembly at filament ends. Curr. Opin. Cell Biol. 12, 97-103.   DOI
29 Dzau, V.J., Braun-Dullaeus, R.C., and Sedding, D.G. (2002). Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8, 1249-1256.   DOI
30 Tripathi, S.K., Chen, Z., Larjo, A., Kanduri, K., Nousiainen, K., Aijo, T., Ricano-Ponce, I., Hrdlickova, B., Tuomela, S., Laajala, E., et al. (2017). Genome-wide analysis of STAT3-mediated transcription during early human Th17 cell differentiation. Cell Rep. 19, 1888-1901.   DOI
31 Watanabe, S., Mu, W., Kahn, A., Jing, N., Li, J.H., Lan, H.Y., Nakagawa, T., Ohashi, R., and Johnson, R.J. (2004). Role of JAK/STAT pathway in IL-6-induced activation of vascular smooth muscle cells. Am. J. Nephrol. 24, 387-392.   DOI
32 Weintraub, W.S. (2007). The pathophysiology and burden of restenosis. Am. J. Cardiol. 100, 3K-9K.   DOI
33 Xu, J., Wan, P., Wang, M., Zhang, J., Gao, X., Hu, B., Han, J., Chen, L., Sun, K., Wu, J., et al. (2015). AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 6, e1818.   DOI
34 Fu, Y., Zhao, Y., Liu, Y., Zhu, Y., Chi, J., Hu, J., Zhang, X., and Yin, X. (2012). Adenovirus-mediated tissue factor pathway inhibitor gene transfer induces apoptosis by blocking the phosphorylation of JAK-2/STAT-3 pathway in vascular smooth muscle cells. Cell. Signal. 24, 1909-1917.   DOI
35 Wu, Z., Liu, J., Hu, S., Zhu, Y., and Li, S. (2018). Serine/threonine kinase 35, a target gene of STAT3, regulates the proliferation and apoptosis of osteosarcoma cells. Cell. Physiol. Biochem. 45, 808-818.   DOI
36 Xiang, Y., Liao, X.H., Yao, A., Qin, H., Fan, L.J., Li, J.P., Hu, P., Li, H., Guo, W., Li, J.Y., et al. (2017). MRTF-A-miR-206-WDR1 form feedback loop to regulate breast cancer cell migration. Exp. Cell Res. 359, 394-404.   DOI
37 Xie, C., Ritchie, R.P., Huang, H., Zhang, J., and Chen, Y.E. (2011). Smooth muscle cell differentiation in vitro: models and underlying molecular mechanisms. Arterioscler. Thromb. Vasc. Biol. 31, 1485-1494.   DOI
38 Xie, N., Chen, M., Dai, R., Zhang, Y., Zhao, H., Song, Z., Zhang, L., Li, Z., Feng, Y., Gao, H., et al. (2017). SRSF1 promotes vascular smooth muscle cell proliferation through a Delta133p53/EGR1/KLF5 pathway. Nat. Commun. 8, 16016.   DOI
39 Hu, J., Shi, Y., Xia, M., Liu, Z., Zhang, R., Luo, H., Zhang, T., Yang, Z., and Yuan, B. (2018). WDR1-regulated actin dynamics is required for outflow tract and right ventricle development. Dev. Biol. 438, 124-137.   DOI
40 Hirano, T., Ishihara, K., and Hibi, M. (2000). Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors. Oncogene 19, 2548-2556.   DOI
41 Huang, X., Li, Z., Hu, J., Yang, Z., Liu, Z., Zhang, T., Zhang, C., and Yuan, B. (2019). Knockout of Wdr1 results in cardiac hypertrophy and impaired cardiac function in adult mouse heart. Gene 697, 40-47.   DOI
42 Intengan, H.D. and Schiffrin, E.L. (2000). Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312-318.   DOI
43 Jackson, N.M. and Ceresa, B.P. (2017). EGFR-mediated apoptosis via STAT3. Exp. Cell Res. 356, 93-103.   DOI
44 Johnson, D.E., O'Keefe, R.A., and Grandis, J.R. (2018). Targeting the IL-6/ JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234-248.   DOI
45 Jonasson, L., Holm, J., and Hansson, G.K. (1988). Cyclosporin A inhibits smooth muscle proliferation in the vascular response to injury. Proc. Natl. Acad. Sci. U. S. A. 85, 2303-2306.   DOI
46 Gomez, D. and Owens, G.K. (2012). Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc. Res. 95, 156-164.   DOI
47 Yuan, B., Zhang, R., Hu, J., Liu, Z., Yang, C., Zhang, T., and Zhang, C. (2018). WDR1 promotes cell growth and migration and contributes to malignant phenotypes of non-small cell lung cancer through ADF/cofilin-mediated actin dynamics. Int. J. Biol. Sci. 14, 1067-1080.   DOI
48 Yuan, B., Wan, P., Chu, D., Nie, J., Cao, Y., Luo, W., Lu, S., Chen, J., and Yang, Z. (2014). A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am. J. Pathol. 184, 1967-1980.   DOI