DOI QR코드

DOI QR Code

Effect of pH Change on Vascular Smooth Muscle Contractility in Rat Superior Mesenteric Artery and Its Branches

쥐 상장간막 동맥과 그 분지에서 pH 변화가 혈관평활근 수축성에 미치는 영향

  • Choi, Soo-Seung (Department of Thoracic and Cardiovascular Surgery, Ewha Womans University School of Medicine)
  • 최수승 (이화여자대학교 의과대학 흉부외과학교실)
  • 투고 : 2009.04.08
  • 심사 : 2010.01.12
  • 발행 : 2010.08.05

초록

Background: Extracellular and intracellular pH ($pH_o$ and $pH_i$), which can be changed in various pathological conditions such as hypoxia, affects vascular contractility. To elucidate the mechanism to alter vascular contractility by pH, the effects of pH on reactivity to vasocontracting agents, intracellular $Ca^{2+}$ influx, and $Ca^{2+}$ sensitivity in vascular smooth muscle were examined. Material and Method: Isometric contractions in rat superior mesenteric arteries (SMA) were observed. Intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) was recorded by microfluorometer using Fura-2/acetoxylmethyl ester in muscle cells. $pH_o$ was increased from 7.4 to 7.8 or decreased to 6.9 or 6.4. $pH_i$ was decreased by applying $NH_4^+$ or propionic acid or modulated by changing $pH_o$ after increasing membrane permeability using $\beta$-escin. Result: Decreases in $pH_o$ from 7.4 to 6.9 or 6.4 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the right and significantly increased half maximal effective concentration (EC50) to NE or SE. Increase in $pH_o$ from 7.4 to 7.8 shifted concentration-response curve by norepinephrine (NE) or serotonin (SE) to the left and significantly reduced EC50 to NE or SE. NE increased $[Ca^{2+}]_i$ in cultured smooth muscle cells from SMA and the increased $[Ca^{2+}]_i$ was reduced by decreases in $pH_o$. NE-induced contraction was inhibited by $NH_4^+$, whereas the resting tension was increased by $NH_4^+$ or propionic acid. When the cell membrane of SMA was permeabilized using ${\beta}$-escin, SMA was contracted by increasing extracellular $Ca^{2+}$ concentration from 0 to $10{\mu}M$ and the magnitude of contraction was decreased by a decrease in $pH_o$ and vice versa. Conclusion: From these results, it can be concluded that a decrease in $pH_o$ might inhibit vascular contraction by reducing the reactivity of vascular smooth muscle to vasoactive agents, $Ca^{2+}$ influx and the sensitivity of vascular smooth muscle to $Ca^{2+}$.

산성화를 초래하는 Hypoxia 등 여러 가지 조건에서 변화하는 세포외 pH 변화는 궁극적으로 세포내 pH 변화를 유발하며 세포 내외 pH 변화는 혈관평활근 수축성 변화를 유발한다. 이러한 세포 내외 pH 변화에 의한 혈관 수축성 변화 기전을 규명하고자, pH 변화가 혈관수축인자들에 의한 혈관평활근 수축, 혈관평활근세포내 $Ca^{2+}$ 농도, 그리고 혈관평활근의 $Ca^{2+}$에 대한 민감도에 미치는 영향을 알아보고자 하였다. 대상 및 방법: 쥐에서 분리한 상장간막동맥과 그 분지에서 등장성 수축을 기록하였으며 배양한 상장간막동맥 세포에서 세포내 $Ca^{2+}$ 변화를 측정하였다. 세포외 pH는 정상인 7.4에서 6.4, 6.9 혹은 7.8로 변화시켰으며, 세포내 pH 변화는 propionic acid나 $NH_4$를 투여하거나 ${\beta}$-escin으로 세포막의 투과성을 증가시켜 세포외 용액의 pH 변화로 유발시켰다. 결과: 세포외 pH를 7.4에서 6.9, 6.4로 감소시키면 노에피네프린과 세로토닌에 의한 용량-반응 곡선이 우측 이동하였으며 최대 수축력의 50% 수축력을 유발하는 농도(half maximal effective concentration)가 증가하였고, pH를 7.8로 증가시키면 그 반대 현상이 일어났다. 노에피네프린은 배양한 혈관평활근세포에서 세포내 $Ca^{2+}$ 농도를 증가시켰으며, 이 세포내 $Ca^{2+}$ 증가는 세포외 pH 감소에 의하여 억제되었으며 세포외 pH 증가에 의하여 증가하였다. 노에피네프린에 의한 수축은 세포내 pH를 감소시키는 $NH_4$에 의하여 억제된 반면, 안정 장력은 $NH_4$과 propionic acid에 의하여 증가하였다. ${\beta}$-escin으로 세포막의 투과도를 증가시킨 후 세포외 용액의 $Ca^{2+}$ 농도를 증가시켜 수축을 유발시킨 후 세포외 용액의 pH를 변화시키면 pH 감소에 의하여 수축력이 감소하였으며 증가에 의하여 수축력이 증가하였다. 결론: 세포외 pH의 감소는 혈관평활근의 수축성을 감소시키는데 이는 세포외 pH 감소에 의한 혈관평활근의 혈관수축물질에 대한 반응성 감소, 혈관평활근 세포내 $Ca^{2+}$ 유입 억제 그리고 $Ca^{2+}$에 대한 혈관평활근의 민감성 감소에 의하여 일어난 것으로 추정할 수 있었다.

키워드

참고문헌

  1. Hessellund A, Aalkjaer C, Bek T. Effect of acidosis on isolated porcine retinal vessels. Curr Eye Res 2006;31:427- 34. https://doi.org/10.1080/02713680600681236
  2. Baxter KA, Laher I, Church J, Hsiang YN. Acidosis augments myogenic constriction in rat coronary arteries. Ann Vasc Surg 2006;20:630-7. https://doi.org/10.1007/S10016-006-9109-9
  3. Kim YC, Lee SJ, Kim KW. Effects of pH on vascular tone in rabbit basilar arteries. J Korean Med Sci 2004; 19:42-50. https://doi.org/10.3346/jkms.2004.19.1.42
  4. Hyvelin JM, O'Connor C, McLoughlin P. Effect of changes in pH on wall tension in isolated rat pulmonary artery: role of the RhoA/Rho-kinase pathway. Am J Physiol Lung Cell Mol Physiol 2004;287:L673-84. https://doi.org/10.1152/ajplung.00331.2003
  5. Austin C, Wray S. Interactions between $Ca^{2+}$ and $H^+$ and functional consequences in vascular smooth muscle. Circ Res 2000;86:355-63. https://doi.org/10.1161/01.RES.86.3.355
  6. Klockner U, Isenberg G. Calcium channel current of vascular smooth muscle ceIls: extracellular protons modulate gating and single channel conductance. J Gen Physiol 1994; 103:665-78. https://doi.org/10.1085/jgp.103.4.665
  7. Klockner U, Isenberg G. Intracellular pH modulates the availability of vascular L-type $Ca^{2+}$ channels. J Gen Physial 1994;103:647-63. https://doi.org/10.1085/jgp.103.4.647
  8. Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. Effect of acidosis on $Ca^{2+}$-activated $K^+$ channels in cultured porcine coronary artery smooth muscle cells. Ptlugers Arch 1998; 436:509-14. https://doi.org/10.1007/s004240050665
  9. Horiuchi T, Dietrich HH, Hongo K, Goto T, Dacey RG Jr. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis. Stroke 2002;33:844-9. https://doi.org/10.1161/hs0302.104112
  10. Nakamura Y, Ohya Y, Abe I, Fujishima M. Sodium-potassium pump current in smooth muscle cells from mesenteric resistance arteries of the guinea-pig. J Physiol 1999;519:203-12. https://doi.org/10.1111/j.1469-7793.1999.0203o.x
  11. Kim MY, Liang GH, Kim JA, Park SH, Hah JS, Suh SH. Contribution of $Na^+$-$K^+$ pump and KIR currents to extracellular pH-dependent changes of contractility in rat superior mesenteric artery. Am J Physiol Heart Cire Physiol 2005;289:H792-800. https://doi.org/10.1152/ajpheart.00050.2005
  12. Komukai K, Ishikawa T, Kurihara S. Effects of acidosis on $Ca^{2+}$ sensitivity of contractile elements in intact ferret myocardium. Am J Physiol Heart Circ Physiol 1998;274(1 Pt 2):H147-54. https://doi.org/10.1152/ajpheart.1998.274.1.H147
  13. Robertson BE, Bonev AD, Nelson MT. Inward rectifier $K^+$ currents in smooth muscle cells from rat coronary arteries: block by $Mg^{2+}$, and $Ba^{2+}$. Am J Physiol Heart Circ Physiol 1996;271:H696-705. https://doi.org/10.1152/ajpheart.1996.271.2.H696
  14. Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 2000;279:C541.66.
  15. Xiao D, Huang X, Longo LD, Pearce WJ, Zhang L. Regulation of baseline $Ca^{2+}$ sensitivity in permeabilized uterine arteries: effect of pregnancy. Am J Physiol Heart Circ Physiol 2006;291:H413-20. https://doi.org/10.1152/ajpheart.00103.2006
  16. Xie CQ, Huang H, Wei S, et al. A comparison of murine smooth muscle cells generated from embryonic versus induced pluripotent stem cells. Stem Cells Dev 2009;18:741- 8. https://doi.org/10.1089/scd.2008.0179
  17. Berger MG, Vandier C, Bonnet P, Jackson WF. Rusch NJ. Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle. Am J Physiol Heart Circ Physiol 1998;275:H1351-9. https://doi.org/10.1152/ajpheart.1998.275.4.H1351
  18. Santa N, Kitazono T, Ago T, et al. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo. Stroke 2003;34:1276-80. https://doi.org/10.1161/01.STR.0000068171.01248.97
  19. Suh SH, Vennekens R, Manolopoulos VG, et. al. Characterisation of explanted endothelial cells from mouse aorta: electrophysiology and $Ca^{2+}$ signalling. Pflugers Arch 1999; 438:612-20. https://doi.org/10.1007/s004240051084
  20. Cha CY, Earm KH, Youm JB, Baek EB, Kim SJ, Earm YE. Electrophysiological modelling of pulmonary artery smooth musclc cells in the rabbits--special consideration to the generation of hypoxic pulmonary vasoconstriction. Prog Biophys Mol Biol 2008;96:399-420. https://doi.org/10.1016/j.pbiomolbio.2007.07.007
  21. Ozdem SS, Yalcin O, Meiselman HJ, Baskurt OK, Usta C. The role of potassium channels in relaxant effect of levosimendan in rat small mesenteric arteries. Cardiovasc Drugs Ther 2006;20:123-7. https://doi.org/10.1007/s10557-006-7294-y
  22. Standen NB, Quayle JM. $K^+$ channel modulation in arterial smooth muscle. Acta Physiol Scand 1998;164:549-57. https://doi.org/10.1046/j.1365-201X.1998.00433.x
  23. Niu YP, Wu LM, Jiang YL, Wang WX, Li LD. Beta-escin, a natural triterpenoid saponin from chinese horse chestnut seeds, depresses hl-60 human leukaemia cell proliferation and induces apoptosis. J Pharm Pharmacol 2008;60:1213-20.