• Title/Summary/Keyword: vascular smooth muscle cell

Search Result 190, Processing Time 0.036 seconds

Evaluation of the Antioxidant and Antiproliferative Properties of a Hot-water Extract from Gulfweed, Sargassum fulvellum

  • Kim, So Jung;Kang, Mingyeong;Lee, Taek-Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.53-61
    • /
    • 2018
  • Sargassum fulvellum (gulfweed) is a widespread seaweed in the coastal areas of northeast Asia. In the present study, we identified the phenolic compounds present in aqueous and ethanolic extracts of S. fulvellum and evaluated their antioxidative properties and their abilities to block cell proliferation using in vitro assays: antioxidant activity was assessed by using a DPPH assay and superoxide anion scavenging activity, anti-tyrosinase activity, and anti-proliferative activity were assessed using MTT and lactate dehydrogenase [LDH] assays in vascular smooth muscle cells. The hot-water ($65^{\circ}C$) extract had a higher phenol content than the ethanolic extract. The hot-water extract showed a statistically significant increase in free radical scavenging activity and a greater ability to reduce proliferation of vascular smooth muscle cells stimulated with platelet-derived growth factor-BB. Taken together, hot-water extracts of S. fulvellum may be an important source of antioxidative and antiproliferative agents.

Enhanced Proliferation and Altered Intracellular Zinc Levels in Early- and Late-Passage Mouse Aorta Smooth Muscle Cells

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.44-47
    • /
    • 2000
  • Cell growth and DNA synthesis were studied from a cultured early- and late- pas- sage mouse aorta smooth muscle cell (MASMC) because the proliferation of vascular smooth muscle cell (VSMC) is a key factor in development of atherosclerosis. In this study, the cells were cultured in fetal bovine serum (FBS) and stimulated by growth factors such as thrombin and platelet-derived growth factor-BB (PDGF-BB). Compared to the number of early-passage MASMC (passage 3 to 9) the number of late-passage MASMC (passage 30 to 40) in a normal serum state was increased 2 fold at Day 1, 3 and 6 in culture, respectively. Incorporation of $[^3H]$ thymidine into DNA induced by serum, PDGF and thrombin in late-passage MASMC was greater than those in early-passage MASMC. We also examined whether intracellular zinc levels would be an aging factor or not. The intracellular zinc level in early- and late-passage MASMC was monitored by using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide. It is interested that late-passage MASMC increased the intracellular fluorescence level of zinc, more than the early passage MASMC did. The alterations of intracellular zinc level occur concurrently with changes in MASMC proliferation rate during aging. This data suggest that the age-associated changes in zinc concentrations may provide a new in vitro model for the study of smooth muscle cell differentiation.

  • PDF

Artemisinin attenuates platelet-derived growth factor BB-induced migration of vascular smooth muscle cells

  • Lee, Kang Pa;Park, Eun-Seok;Kim, Dae-Eun;Park, In-Sik;Kim, Jin Tack;Hong, Heeok
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.521-525
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Artemisinin (AT), an active compound in Arternisia annua, is well known as an anti-malaria drug. It is also known to have several effects including anti-oxidant, anti-inflammation, and anti-cancer activities. To date, the effect of AT on vascular disorders has not been studied. In this study, we investigated the effects of AT on the migration and proliferation of vascular smooth muscle cells (VSMC) stimulated by platelet-derived growth factor BB (PDGF-BB). MATERIALS/METHODS: Aortic smooth muscle cells were isolated from Sprague-Dawley rats. PDGF-BB stimulated VSMC migration was measured by the scratch wound healing assay and the Boyden chamber assay. Cell viability was determined by using an EZ-Cytox Cell Viability Assay Kit. The production of reactive oxygen species (ROS) in PDGF-BB stimulated VSMC was measured through $H_2DCF$-DA staining. We also determined the expression levels of signal proteins relevant to ROS, including measures of extracellular signal-regulated kinase (ERK) 1/2 measured by western blot analysis and matrix metalloproteinase (MMP) 9 measured by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: AT ($10{\mu}M$ and $30{\mu}M$) significantly reduced the proliferation and migration of PDGF-BB stimulated VSMC in a dose-dependent manner. The production of ROS, normally induced by PDGF-BB, is reduced by treatment with AT at both concentrations. PDGF-BB stimulated VSMC treated with AT ($10{\mu}M$ and $30{\mu}M$) have reduced phosphorylation of ERK1/2 and inhibited MMP9 expression compared to untreated PDGF-BB stimulated VSMC. CONCLUSIONS: We suggest, based on these results, that AT may exert an anti-atherosclerotic effect on PDGF-BB stimulated VSMCs by inhibiting their proliferation and migration through down-regulation of ERK1/2 and MMP9 phosphorylation.

Roles of ERK and NF-${\kappa}$ B in Interleukin-8 Expression in Response to Heat Shock Protein 22 in Vascular Smooth Muscle Cells

  • Kang, Seung-Hun;Lee, Ji-Hyuk;Choi, Kyung-Ha;Rhim, Byung-Yong;Kim, Koan-Hoi
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.171-176
    • /
    • 2008
  • Heat shock proteins (HSPs) serve as molecular chaperones and play a role in cell protection from damage in response to stress stimuli. The aim of this article is to investigate whether HSP22 affects IL-8 expression in vascular smooth muscle cells (VSMCs), and which cellular factors are involved in the HSP-mediated IL-8 induction in that cell type in terms of mitogen activated protein kinase (MAPK) and transcription element. Exposure of aortic smooth muscle cells (AoSMCs) to HSP22 not only enhanced IL-8 release but also induced IL-8 transcript via promoter activation. HSP22 activated ERK and p38 MAPK in AoSMCs. HSP22-induced IL-8 release was inhibited by U0126, but not by SB202190. A mutation in the IL-8 promoter region at the binding site of NF-${\kappa}$ B, but not AP-1 or C/EBP, impaired promoter activation in response to HSP22. Delivery of I ${\kappa}$ B, but not dominant negative c-Jun, lowered HSP22-induced IL-8 release from AoSMCs. These results suggest that HS P22 induces IL-8 in VSMCs via ERK1/2, and that transcription factor NF-kB may be required for the HSP22-induced IL-8 up-regulation.

Hypoxia-induced miR-1260b regulates vascular smooth muscle cell proliferation by targeting GDF11

  • Seong, Minhyeong;Kang, Hara
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.206-211
    • /
    • 2020
  • Vascular smooth muscle cells (VSMCs) are a unique cell type that has unusual plasticity controlled by environmental stimuli. As an abnormal increase of VSMC proliferation is associated with various vascular diseases, tight regulation of VSMC phenotypes is essential for maintaining vascular homeostasis. Hypoxia is one environmental stress that stimulates VSMC proliferation. Emerging evidence has indicated that microRNAs (miRNAs) are critical regulators in the hypoxic responses of VSMCs. Therefore, we previously investigated miRNAs modulated by hypoxia in VSMCs and found that miR-1260b is one of the most upregulated miRNAs under hypoxia. However, the mechanism that underlies the regulation of VSMCs via miR-1260b in response to hypoxia has not been explored. Here we demonstrated that hypoxia-induced miR-1260b promotes VSMC proliferation. We also identified growth differentiation factor 11 (GDF11), a member of the TGF-β superfamily, as a novel target of miR-1260b. miR-1260b directly targets the 3'UTR of GDF11. Downregulation of GDF11 inhibited Smad signaling and consequently enhanced the proliferation of VSMCs. Our findings suggest that miR-1260b-mediated GDF11-Smad-dependent signaling is an essential regulatory mechanism in the proliferation of VSMCs, and this axis is modulated by hypoxia to promote abnormal VSMC proliferation. Therefore, our study unveils a novel function of miR-1260b in the pathological proliferation of VSMCs under hypoxia.

Dendropanax morbifera Extract Inhibits Intimal Hyperplasia in Balloon-Injured Rat Carotid Arteries by Modulating Phenotypic Changes in Vascular Smooth Muscle Cells

  • Lim, Leejin;Jo, Juyeong;Yoon, Sang Pil;Jang, Inyoub;Ki, Young-Jae;Choi, Dong-Hyun;Song, Heesang
    • Natural Product Sciences
    • /
    • v.26 no.1
    • /
    • pp.71-78
    • /
    • 2020
  • The plant Dendropanax morbifera Léveille is effective folk medicines for the treatment of several conditions, such as infectious diseases, skin diseases, and other illnesses. Although the inhibitory effects of D. morbifera on the proliferation and migration of vascular smooth muscle cells (VSMCs) have been shown in our previous study, its effects in vivo remain to be elucidated. In this study, we aimed to investigate the protective effects of the extracts from D. morbifera (EDM) on neointimal hyperplasia of rat carotid artery and explore the underlying mechanisms. We observed that the ratio of intima to media thickness (I/M) was significantly decreased in the EDM-treated groups by ~80% compared to that of the control. The expression of Ki-67 and proliferating cell nuclear antigen was decreased by ~70% in the EDM-treated groups compared to that of the control. In addition, matrix metalloproteinase (MMP)2 and MMP9 significantly reduced in the neointimal layer of the EDM-treated groups. Moreover, the decreased levels of contractile phenotypic markers of VSMCs, such as α-smooth muscle actin, myocardin, and smooth muscle-myosin heavy chain, were successfully restored by EDM treatment. Furthermore, the levels of synthetic phenotypic markers, cellular retinal binding protein 1 and connexin 43 were also restored to normal levels. These results suggest that EDM inhibits vascular neointimal hyperplasia induced by balloon injury in rats via phenotypic modulation of VSMCs. Therefore, EDM may be a potential drug candidate for the prevention of restenosis.

4-Aminopyridine Inhibits the Large-conductance $Ca^{2+}-activated$ $K^+$ Channel $(BK_{Ca})$ Currents in Rabbit Pulmonary Arterial Smooth Muscle Cells

  • Bae, Young-Min;Kim, Ae-Ran;Kim, Bo-Kyung;Cho, Sung-Il;Kim, Jung-Hwan;Earm, Yung-E
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.25-28
    • /
    • 2003
  • Ion channel inhibitors are widely used for pharmacological discrimination between the different channel types as well as for determination of their functional role. In the present study, we tested the hypothesis that 4-aminopyridine (4-AP) could affect the large conductance $Ca^{2+}$-activated $K^+$ channel ($BK_{Ca}$) currents using perforated-patch or cell-attached configuration of patch-clamp technique in the rabbit pulmonary arterial smooth muscle. Application of 4-AP reversibly inhibited the spontaneous transient outward currents (STOCs). The reversal potential and the sensitivity to charybdotoxin indicated that the STOCs were due to the activation of $BK_{Ca}$. The $BK_{Ca}$ currents were recorded in single channel resolution under the cell-attached mode of patch-clamp technique for minimal perturbation of intracellular environment. Application of 4-AP also inhibited the single $BK_{Ca}$ currents reversibly and dose-dependently. The membrane potential of rabbit pulmonary arterial smooth muscle cells showed spontaneous transient hyperpolarizations (STHPs), presumably due to the STOC activities, which was also inhibited by 4-AP. These results suggest that 4-AP can inhibit $BK_{Ca}$ currentsin the intact rabbit vascular smooth muscle. The use of 4-AP as a selective voltage-dependent $K^+$ (KV) channel blocker in vascular smooth muscle, therefore, must be reevaluated.

Effects of Luteolin on Fetal Bovine Serum-induced Events in Cultured Rat Vascular Smooth Muscle Cells (소태아혈청으로 유도된 흰쥐 혈관평활근세포의 luteolin 효과)

  • Lim, Yong
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1595-1599
    • /
    • 2012
  • Cell cycle activation and progression in vascular proliferative disease represent potent therapeutic targets. Luteolin, which occurs as glycosylated forms in celery, green pepper, perilla leaf, and camomile tea, has demonstrated antimutagenic, antitumorigenic, antioxidant, and antiinflammatory properties. In this study, we investigated the effect of luteolin on the proliferation of primary cultured rat aortic vascular smooth muscle cells induced by 5% fetal bovine serum. Luteolin at concentrations of 5, 20, and $50{\mu}M$ significantly inhibited this proliferation by 29.6, 50.8, and 83.1%, respectively. The incorporation of $[^3H]$-thymidine into DNA was also inhibited by 25.8, 57.6, and 81.0%, respectively. Flow cytometry analysis of DNA content revealed that FBS-inducible cell cycle progression was blocked by luteolin. Luteolin showed no cytotoxicity in VSMCs in this experimental condition according to WST-1 assays. Luteolin may represent a potential anti-proliferative agent for treatment of angioplasty restenosis and atherosclerosis.

Inhibitory Effects of YP 12, A Newly Synthesized Obovatol Derivative on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Lim, Yong;Lee, Mi-Yea;Jung, Jae-Kyung;Pyo, Myoung-Yun;Yun, Yeo-Pyo
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.187-191
    • /
    • 2011
  • Platelet derived growth factor (PDGF)-BB is one of the most potent vascular smooth muscle cell(VSMC) proliferative factors, and abnormal VSMC proliferation by PDGF-BB plays an important role in the development and progression of atherosclerosis. The aim of this study was to assess the effect of YP 12, a newly synthesized obovatol derivative, on the proliferation of PDGF-BB-stimulated rat aortic VSMCs. The anti-proliferative effects of YP 12 on rat aortic VSMCs were examined by direct cell counting and by using $[^3H]$ thymidine incorporation assays. It was found that YP 12 potently inhibited the growth of VSMCs. The pre-incubation of YP 12 (1-4 ${\mu}M$) significantly inhibited the proliferation and DNA synthesis of 25 ng/ml PDGF-BB-stimulated rat aortic VSMCs in a concentration-dependent manner. In accordance with these findings, YP 12 revealed blocking of the PDGF-BB-inducible progression through G0/G1 to S phase of the cell cycle in synchronized cells. Whereas, YP 12 did not show any cytotoxicity in rat aortic VSMCs in this experimental condition by WST-1 assay. These results also show that YP 12 may have potential as an anti-proliferative agent for the treatment of restenosis and atherosclerosis.

The Role of Receptor Activator of NF-κ Ligand in Smooth Muscle Cell Proliferation (Smooth muscle cell 증식에 있어 NF-κ ligand의 receptor activator의 역할)

  • Kim, Hyun-Ju
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1066-1070
    • /
    • 2006
  • Smooth muscle cell (SMC) proliferation is important in the pathogenesis of vascular proliferative disorders. Understanding of the molecular mechanism underlying SMC growth after arterial injury would have therapeutic implications. Here we report that receptor activator of $NF-{\kappa}B$ ligand (RANKL), a member of tumor necrosis factor (TNF) family, promotes the proliferation of SMC, leading to decreased expression of p21 and enhancement of SMC growth. ERK and p38 phosphorylation was enhanced after RANKL treatment in SMC. Inhibition of ERK/p38 MAPK activity by PD98059/SB203580 completely abolished RANKL-induced proliferation of SMC, indicating ERK and p38 MAPK are essential for RANKL-induced SMC proliferation. Taken together, our findings demonstrate that RANK-RANKL-ERK/p38 pathway is important for proliferation of SMC and that these molecules may be the new therapeutic targets for the prevention of vascular diseases.