• Title/Summary/Keyword: varying thickness

Search Result 761, Processing Time 0.033 seconds

Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility

  • Soliman, Ahmed E.;Eltaher, Mohamed A.;Attia, Mohamed A.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.85-96
    • /
    • 2018
  • This study investigates the response of functionally graded (FG) gas pipe under unsteady internal pressure and temperature. The pipe is proposed to be manufactured from FGMs rather than custom carbon steel, to reduce the erosion, corrosion, pressure surge and temperature variation effects caused by conveying of gases. The distribution of material graduations are obeying power and sigmoidal functions varying with the pipe thickness. The sigmoidal distribution is proposed for the 1st time in analysis of FG pipe structure. A Two-dimensional (2D) plane strain problem is proposed to model the pipe cross-section. The Fourier law is applied to describe the heat flux and temperature variation through the pipe thickness. The time variation of internal pressure is described by using exponential-harmonic function. The proposed problem is solved numerically by a two-dimensional (2D) plane strain finite element ABAQUS software. Nine-node isoparametric element is selected. The proposed model is verified with published results. The effects of material graduation, material function, temperature and internal pressures on the response of FG gas pipe are investigated. The coupled temperature and displacement FEM solution is used to find a solution for the stress displacement and temperature fields simultaneously because the thermal and mechanical solutions affected greatly by each other. The obtained results present the applicability of alternative FGM materials rather than classical A106Gr.B steel. According to proposed model and numerical results, the FGM pipe is more effective in natural gas application, especially in eliminating the corrosion, erosion and reduction of stresses.

A Study on the Application of Ag Nano-Dots Structure to Improve the Light Trapping Effect of Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 효과 개선을 위한 Ag nano-dots 구조 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2019
  • In this study, the Ag nano-dots structure was applied to the textured wafer surface to improve the light trapping effect of crystalline silicon solar cell. The Ag nano-dots structure was formed by the annealing of Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The effect of light trapping was compared and analyzed through light reflectance measurements. The optimization process of the Ag nano-dots structure was made by varying the thickness of Ag thin film, the annealing temperature and time. The thickness of Ag thin films was in the range of 5 ~ 20 nm. The annealing temperature was in the range of 450~650℃ and the annealing time was in the range of 30 ~ 60 minutes. As a result, the light reflectance of 10 nm Ag thin film annealed at 650℃ for 30 minutes showed the lowest value of about 9.67%. This is a value that is about 3.37% lower than the light reflectance of the sample that has undergone only the texturing process. Finally, the change of the light reflectance by the HF treatment of the sample on which the Ag nano-dots structure was formed was investigated. The HF treatment time was in the range of 0 ~ 120 seconds. As a result, the light reflectance decreased by about 0.41% due to the HF treatment for 75 seconds.

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

A New Steel Jacketing Method for Concrete Cylinders and Comparison of the Results with a Constitutive Model

  • Choi, Eun-Soo;Kim, Man-Cheol
    • International Journal of Railway
    • /
    • v.1 no.2
    • /
    • pp.72-81
    • /
    • 2008
  • This paper introduces a new steel jacketing method for reinforced concrete columns with lap splice and evaluates its performance by a series of axial tests of concrete cylinders. At first, 45 concrete cylinders were fabricated with varying the design compressive strengths of 21, 27 and 35 MPa and, then, the part of them was jacketed with two-split-steel jackets under lateral confining pressure. The parameters in the first test were the steel jacket's thickness and the existence of adhesive between steel and concrete surface. In the second test, whole steel jackets were used to wrap cylinders with lateral pressure. Also, a double-layer jacket consisted of two steel plates was introduced; a cylinder was jacketed by two steel plates one after another. The effect of the new method was verified through comparing the results of the compressive tests for plain and jacketed cylinders. The steel jacket built following the new method showed good results of increasing the compressive strength and ductility of the jacketed cylinders with respect to the plain cylinders. The thicker steel jackets showed the more increased compressive strength, and the ductility at failure depended on the welding quality on steel jackets. The adhesive between steel and concrete surface reduced the confining effect of the steel jackets. The whole jacket showed more ductile behavior than the two-split jackets. The double-layered jackets were estimated to possess an equal performance to that of a single steel jacket having the same thickness of the double-layered jacket. Finally, the experimental results were compared with the constitutive model of steel-jacketed concrete; which showed a good agreement between the experimental results and the models.

  • PDF

Characteristics of Organic Light-Emitting Diodes using PECCP Langmuir-Blodgett(LB) Film as an Emissive Layer (PECCP LB 박막을 발광층으로 사용한 유기 발광 다이오드의 특성)

  • Lee, Ho-Sik;Lee, Won-Jae;Park, Jong-Wook;Kim, Tae-Wan;Dou--Yol Kang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.111-114
    • /
    • 1999
  • Electroluminescence(EL) devices based on organic thin films have been attracted lots of interests in large-area light-emitting display. In this stuffy, an emissive layer was fabricated using Langmuir-Blodgett(LB) technique in organic light-emitting (OLEDs). This emissive organic material was synthesized and named PECCP[poly(3.6-N-2-ethylhexyl carbazolyl cyanoterephthalidene)] which has a strong electron donor group and an electron acceptor group in main chain repeated unit. This material has good solubility in common organic solvents such as chloroform. THF, etc, and has a good stability in air. The Langmuir-Blodgett(LB) technique has the advantage of precise control of the thickness down to the molecular scale, In particular, by varying the film thickness it is possible to investigate the metal/polymer interface. Optimum conditions for the LB film deposition are usually determined by investigating a relationship between a surface pressure $\pi$ and an effective are A occupied by one molecule on the subphase. The LB films were deposited on an indium-tin-oxide(ITO) glass at a surface pressure of 10 mN/m and dipping speed of 12 mm/min after spreading PECCP solution on distilled water surphase at room temperature, Cell structure was ITO/PECCP LB film/Alq$_3$/Al. We considered PECCP as a hole -transport layer inserted between the emissive layer and ITO. We also used Alq$_3$ as an emissive layer and an electron transport layer. We measured current-voltage(I-V) characteristics, UV/visible absorption, PL spectrum and EL spectrum of the OLEDs.

  • PDF

Fatigue Strength of In-plane Welded Attachments (면내 거셋 용접연결부의 피로강도)

  • Bae, Doobyong
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.629-637
    • /
    • 2003
  • This s paper presented the results of the three phases of fatigue tests to determine the fatigue strength of in-plane welded gusset joints, which are the most common details inevitably existing in the region of high stress range. A total of 57 fatigue specimens with varying thickness and strengths were made and tensile fatigue tests performed. One full-scale beam fatigue test was also performed. The validity of the fatigue strength of those details in the specification was confirmed, with the effects of thickness of flanges and welded attachments, length of attachments, and strength of applied steel examined. The characteristics of crack initiation and propagation were also observed. The test result was evaluated by comparing it with other test data and fatigue criteria of other countries. To determine the degree of stress concentration in the weld toe depending on geometric configuration such as attachment length and transition radius, analyses were performed. Compared to the present specification, analytical results indicate the need to revise and subdivide the detail categories.

Study on Electrical Conductivity, Transmittance and Gas Barrier Properties of DLC Thin Films (DLC 박막의 전기전도성, 투과율 및 가스베리어 특성에 관한 연구)

  • Park, S.B.;Kim, C.H.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.187-193
    • /
    • 2018
  • In this study, the electrical conductivity, transmittance and gas barrier properties of diamond-like carbon (DLC) thin films were studied. DLC is an insulator, and has transmittance and oxygen gas barrier properties varying depending on the thickness of the thin film. Recently, many researchers have been trying to apply DLC properties to specific industrial conditions. The DLC thin films were deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) process. The doping gas was used for the DLC film to have electrical conductivity, and the optimum conditions of transmittance and gas barrier properties were established by adjusting the gas ratio and DLC thickness. In order to improve the electrical conductivity of the DLC thin film, $N_2$ doping gas was used for $CH_4$ or $C_2H_2$ gas. Then, a heat treatment process was performed for 30 minutes in a box furnace set at $200^{\circ}C$. The lowest sheet resistance value of the DLC film was found to be $18.11k{\Omega}/cm^2$. On the other hand, the maximum transmittance of the DLC film deposited on the PET substrate was 98.8%, and the minimum oxygen transmission rate (OTR) of the DLC film of $C_2H_2$ gas was 0.83.

Reclamation and Soil Improvement on Ultra Soft Soil (I) - Reclamation (초연약지반의 매립 및 지반개량 사례 연구 (I) - 매립)

  • Na, Yung-Mook;Hong, Eui;Han, Jung-Soo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2005
  • The "Silt Pond" is 180 hectares in size and contained ultra soft slurry-like soil varying between 3 to 20 meters in thickness. Reclamation works in the Silt Pond commenced in the mid of 1990s. A considerable amount of subsurface investigation inclusive of sampling, field vane and density logging tests were carried out prior to the reclamation of the Silt Pond. Since material in the Silt Pond is extremely soft, filling was done by spreading sand with high water content in thin and equal thickness lifts, allowing the stability of the slurry-like foundation. Despite the extreme care taken, failures occurred during the sand spreading phase. A large piece of high strength geotextile measuring $900m{\times}700m$ was placed to strengthen the slurry like soil foundation at locations where the ultra-soft soil was found to be exposed. Following the remedial works, the Silt Pond was again reclaimed by sand spreading up to +4.0m CD. The success of the reclamation was confirmed by marine CPT profiling.

  • PDF

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Effect of Conductive Particles on Electrical Conductivity using EHD Ink Jet Printing Technology (EHD Ink Jet Printing 기술을 이용한 Conductive Particle의 전기전도도에 미치는 영향)

  • Ahn, Ju-Hun;Lee, Yong-Chan;Choi, Dae-San;Lee, Chang-Yull
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.6
    • /
    • pp.1-8
    • /
    • 2018
  • ACF, which is used for the transparent electrode film is manufactured by the thermocompression method with conductive particles. However, the method has disadvantages since there are many wasted materials and the process is complex. To overcome the demerits of the conventional method, EHD printing technology with conductive particles ink is proposed. The line thickness of patterning is influenced by the characteristics of the inks and the printing conditions. Therefore, it is salient to find the most conducive conditions for the micro patterning. In this paper, the ink with conductive particles was manufactured, and the patterning results were obtained by varying the nozzle thickness and the flow rate. The electrical conductivity according to the ejection of the particles ink is obtained.