Browse > Article
http://dx.doi.org/10.12989/scs.2015.18.3.583

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading  

Murugesan, Nagaraj (School of Mechanical and Building Sciences, VIT University)
Rajamohan, Vasudevan (School of Mechanical and Building Sciences, VIT University)
Publication Information
Steel and Composite Structures / v.18, no.3, 2015 , pp. 583-601 More about this Journal
Abstract
In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.
Keywords
composite laminates; interlaminar shear stresses; orthotropic materials; thermal environment; finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Salamon, N.J. (1978), "Interlaminar stresses in a layered composite Laminate in bending", Fibre Sci. Technol., 11(4), 305-317.   DOI
2 Shariyat, M. (2010), "A generalized high-order global-local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads", Compos. Struct., 92(1), 130-143.   DOI
3 Tahani, M. (2007), "Analysis of laminated composite beams using layerwise displacement theories", Compos. Struct., 79(4), 535-547.   DOI
4 Tong, J.W., Xie, M.Y. and Shen, M. (2004), "The interlaminar stresses of symmetric composite laminates", J. Reinf. Plast. Compos., 23(10), 1023-1029.   DOI
5 Vidal, P. and Polit, O. (2008), "A family of sinus finite elements for the analysis of rectangular laminated beams", Compos. Struct., 84(1), 56-72.   DOI
6 Vidal, P. and Polit, O. (2009), "A refined sine-based finite element with transverse normal deformation for the analysis of laminated beams under thermo mechanical loads", J. Mech. Mater. Struct., 4(6), 1127-1155.   DOI
7 Wu, C.P. and Kuo, H.C. (1993), "An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates", Compos. Struct., 24(1), 29-42.   DOI
8 Wu, H. and Yan, X. (2005), "Interlaminar stress modeling of composite laminates with finite element method", J. Reinf. Plast. Compos., 24(3), 130-143.
9 Aydogdu, M. (2007), "Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions", Compos. Sci. Technol., 67(6), 1096-1104.   DOI   ScienceOn
10 Becker, W., Jin, P.P. and Lindemann, J. (2001), "The free-corner effect in thermally loaded laminates", Compos. Struct., 52(1), 97-102.   DOI
11 Bhaskar, K. and Kaushik, B. (2004), "Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges", Compos. Struct., 63(1), 63-68.   DOI
12 Gatto, A., Mattioni, F. and Friswell, M.I. (2009), "Experimental investigation of bistable winglets to enhance wing lift takeoff capability", J. Aircraft, 46(2), 647-655.   DOI
13 Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", Int. J. Solid. Struct., 37(3), 435-459.   DOI
14 Cho, M. and Oh, J. (2003), "Higher order zig-zag plate theory under thermo-electric-mechanical loads combined", Compos.: Part B, 34(1), 67-82.
15 Cho, M. and Oh, J. (2004), "Higher order zig-zag theory for fully coupled thermo-electric-mechanical smart composite plates", Int. J. Solid. Struct., 41(5-6), 1331-1356.   DOI
16 Gayen, D. and Roy, T. (2013), "Hygro-Thermal Effects on Stress Analysis of Tapered Laminated Composite Beam", Int. J. Compos. Mater., 3(3), 46-55.
17 Hu, E.Z., Soutis, C. and Edge, E.C. (1997), "Interlaminar stresses in composite laminates with Interlaminar stresses in composite a circular hole," Compos. Struct., 37(2), 223-232.   DOI
18 Kassapoglou, C. (1990), "Determination of Interlaminar Stresses in Composite Laminates under Combined Loads", J. Reinf. Plast. Compos., 9(1), 33-58.   DOI
19 Kress, G., Roos, R., Barbezat, M., Dransfeld, C. and Ermann, P. (2005), "Model for interlaminar normal stress in singly curved laminates", Compos. Struct., 69(4), 458-469.   DOI
20 Lee, Y.W. (1994), "Interlaminar stress analysis of composite laminates using a sublaminate/layer model" Int. J. Solid. Struct., 31(11), 1549-1564.   DOI
21 Lee, C.Y. and Liu, D. (1992), "An interlaminar stress continuity theory for laminated composite analysis", Comput. Struct., 42(1), 69-78.   DOI
22 Murthy, M.V.V.S., Mahapatra, D.R., Badarinarayana, K. and Gopalakrishnan, S. (2005), "A refined higher order finite element for asymmetric composite beams", Compos. Struct., 67(1), 27-35.   DOI
23 Matsunaga, H. (2002), "Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories", Compos. Struct., 55(1), 105-114.   DOI
24 Matsunaga, H. (2003), "Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading", Compos. Struct., 60(3), 345-358.   DOI
25 Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177.   DOI
26 Oh, J. and Cho, M. (2004), "A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviours", Int. J. Solid. Struct., 41(5-6), 1357-1375.   DOI
27 Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411.   DOI
28 Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35.   DOI
29 Rand, O. (1998), "Interlaminar shear stresses in solid composite beams using a complete out-of-plane shear deformation model", Compos. Struct., 66(6), 713-723.   DOI
30 Rolfes, R. and Rohwer, K. (2000), "Integrated thermal and mechanical analysis of composite plates and shells", Compos. Sci. Technol., 60(11), 2097-2106.   DOI