• Title/Summary/Keyword: various substrate

Search Result 2,283, Processing Time 0.032 seconds

A Strategy on the Growth of Large Area Polycrystalline Si Virtual Substrate Using Al-Induced Crystallization (알루미늄 유도 결정화를 이용한 대면적 다결정 Si 가상 기판 성장 전략)

  • Dohyun Kim;Kwangwook Park
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.26-35
    • /
    • 2024
  • Aluminum-induced crystallization (AIC) as a route to reduce the fabrication cost and to obtain polycrystalline Si (p-Si) thin-film of large grain size is a promising alternative of single-crystalline (s-Si) substrate or p-Si thin-film obtained by conventional methods such as solid phase crystallization (SPC) and laser-induced crystallization (LIC). As the AIC process occurs at the interface between a-Si and Al thin-films, there are various process and interface parameters. Also, it directly means that there is a certain parametric window to obtain p-Si of large grain size having uniform crystal orientation. In this article, we investigate the effect of the various process and interface parameters to obtain p-Si of large grain size and uniform crystal orientation from the literature review. We also suggest the potential use of the p-Si as a virtual substrate for the growth of various compound semiconductors in a form of low-dimension as well as thin-film as a way for their monolithic integration on Si.

Etching properties of sapphire substrate using $CH_4$/Ar inductively coupled plasma ($CH_4$/Ar 유도 결합 플라즈마를 이용한 Sapphire 기판의 식각 특성)

  • Um, Doo-Seung;Kim, Gwan-Ha;Kim, Dong-Pyo;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.102-102
    • /
    • 2008
  • Sapphire (${\alpha}-Al_2O_3$) has been used as the substrate of opto-electronic device because of characteristics of thermal stability, comparatively low cost, large diameter, optical transparency and chemical compatibility. However, there is difficulty in the etching and patterning due to the physical stability of sapphire and the selectivity with sapphire and mask materials [1,2]. Therefore, sapphire has been studied on the various fields and need to be studied, continuously. In this study, the etching properties of sapphire substrate were investigated with various $CH_4$/Ar gas combination, radio frequency (RF) power, DC-bias voltage and process pressure. The characteristics of the plasma were estimated for mechanism using optical emission spectroscopy (OES). The chemical compounds on the surface of sapphire substrate were investigated using energy dispersive X-ray (EDX). The chemical reaction on the surface of the etched sapphire substrate was observed by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was used to investigate the vertical and slope profiles.

  • PDF

Vibration Control of the Hybrid Type Solar Cell Substrate Handling Robot (하이브리드 타입 솔라셀 기판 이송용 로봇 진동 제어)

  • Park, Dong Il;Park, Cheolhoon;Park, Joo Han;Cheong, Kwang Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.909-913
    • /
    • 2013
  • Various types of large substrate handling robots are used in the thin file solar cell manufacturing line as well as LCD or PDP production line. Because the robot handles the heavy substrate at high speed, there are some issues such as vibration control and the optimal design of arms and forks. As the substrate becomes larger and heavier, robot systems are also larger and the vibration issue of the robot end-effector becomes more important. In the paper, we established the robot modeling and the control architecture including the flexible part such as forks. Then, we performed dynamic simulation in the various condition and analyzed the characteristics of the fork vibration. We can reduce the vibration using the trajectory planning and input shaping algorithm and it was proved by experiment.

Artificial Metalloproteases with Broad Substrate Selectivity Constructed on Polystyrene

  • Ko, Eun-Hwa;Suh, Jung-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1917-1923
    • /
    • 2004
  • Although the proteolytic activity of the Cu(II) complex of cyclen (Cyc) is greatly enhanced upon attachment to a cross-linked polystyrene (PS), the Cu(II)Cyc-containing PS derivatives reported previously hydrolyzed only a very limited number of proteins. The PS-based artificial metalloproteases can overcome thermal, mechanical, and chemical instabilities of natural proteases, but the narrow substrate selectivity of the artificial metalloproteases limits their industrial application. In the present study, artificial metalloproteases exhibiting broad substrate selectivity were synthesized by attaching Cu(II)Cyc to a PS derivative using linkers with various structures in an attempt to facilitate the interaction of various protein substrates with the PS surface. The new artificial metalloproteases hydrolyzed all of the four protein substrates (albumin, myoglobin, ${\gamma}$-globulin, and lysozyme) examined, manifesting $k_{cat}/K_m$ values of 28-1500 $h_{-1}M_{-1}$ at 50 $^{\circ}C$. The improvement in substrate selectivity is attributed to steric and/or polar interaction between the bound protein and the PS surface as well as the hydrophobicity of the microenvironment of the catalytic centers.

Effect of a Finite Substrate on the Radiation Characteristics of a Linear Phased Array Antenna Positioned along the E-plane (유한한 기판 크기가 E-평면으로 배열된 선형 위상 배열 안테나의 방사 특성에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.5
    • /
    • pp.46-53
    • /
    • 2011
  • The effect of a finite substrate on the radiation characteristics of a linear 7-element array antenna positioned along the E-plane is investigated. Active reflection coefficients and average active element patterns are simulated for various substrate sizes. The E-plane radiation pattern of a fully excited array for various scan angles is correlated with the active reflection coefficient and average acitive element pattern. The effect of E-plane substrate size on the radiation characteristics of a linear array along the E-plane is larger than that of H-plane substarte size.

Effect of Negative Substrate Bias Voltage on the Microstructure and Mechanical Properties of Nanostructured Ti-Al-N-O Coatings Prepared by Cathodic Arc Evaporation

  • Heo, Sungbo;Kim, Wang Ryeol;Park, In-Wook
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Ternary Ti-X-N coatings, where X = Al, Si, Cr, O, etc., have been widely used for machining tools and cutting tools such as inserts, end-mills, and etc. Ti-Al-N-O coatings were deposited onto silicon wafer and WC-Co substrates by a cathodic arc evaporation (CAE) technique at various negative substrate bias voltages. In this study, the influence of substrate bias voltages during deposition on the microstructure and mechanical properties of Ti-Al-N-O coatings were systematically investigated to optimize the CAE deposition condition. Based on results from various analyses, the Ti-Al-N-O coatings prepared at substrate bias voltage of -80 V in the process exhibited excellent mechanical properties with a higher compressive residual stress. The Ti-Al-N-O (-80 V) coating exhibited the highest hardness around 30 GPa and elastic modulus around 303 GPa. The improvement of mechanical properties with optimized bias voltage of -80 V can be explained with the diminution of macroparticles, film densification and residual stress induced by ion bombardment effect. However, the increasing bias voltage above -80 V caused reduction in film deposition rate in the Ti-Al-N-O coatings due to re-sputtering and ion bombardment phenomenon.

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Kim Jin-Sa;Oh Yong-Cheol;Cho Choon-Nam;Lee Dong-Gyu;Shin Cheol-Gi;Kim Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.505-509
    • /
    • 2004
  • The (Sr/sub 0.9/Ca/sub 0.1/)TiO₃(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO₂/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O₂ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[Å/min]. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of 100~500[℃]. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of -80~+90[℃]. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

Effect of ion implanted sapphire substrates for GaN (GaN 성장을 위한 이온 주입된 사파이어 기판의 효과)

  • 이재석;진정근;강민구;노대호;성윤모;변동진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.170-170
    • /
    • 2003
  • We have implanted on sapphire substrate with various ions and investigated the properties of GaN epilayers grown on implanted sapphire substrate by metal organic chemical vapor deposition (MOCVD). Sapphire is typical substrate for GaN epilayers. However, there are many problems such as lattice mismatch and thermal coefficient difference between sapphire substrate and GaN. The ion implanted substrate's surface had decreased internal tree energies during the growth of the GaN epilayer, md the misfit strain was relieved through the formation of an AlN phase on the ions implanted sapphire(0001) substrates. [1] The crystal and optical properties of GaN epilayer grown in ions implanted sapphire(0001) substrate were improved.

  • PDF

Enhancement of Magneto-optical Kerr Effect Signal from the Nanostructure by Employing Anti-reflection Coated Substrate

  • Kim, D.H.;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.70-75
    • /
    • 2008
  • In this study, a MOKE (Magneto-optical Kerr effect) measurement method for magnetic nanostructures is proposed. Theoretically, the MOKE signal enhancement can be predicted and confirmed when an anti-reflection coated substrate is used. Since MOKE is a ratio of reflectivity and the difference between the reflectivities for two magnetic states, when the reflectivity of the substrate part is reduced by employing an anti-reflection coated substrate, MOKE signal enhancement can be achieved. The enhancement is confirmed by simple numerical MOKE calculations. When the reflectivity of an anti-reflection coated substrate is 0.7%, the calculated MOKE signal is about 79% of its bulk values for the 100-nm wide Fe nanowire with a 1500-nm radius laser beam. It was found that, for various numerical calculations, a larger MOKE signal is obtained relative to a smaller substrate reflectivity.

A Simple and Accurate Parameter Extraction Method for Substrate Modeling of RF MOSFET (간단하고 정확한 RF MOSFET의 기판효과 모델링과 파라미터 추출방법)

  • 심용석;양진모
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2002.11a
    • /
    • pp.363-370
    • /
    • 2002
  • A substrate network model characterizing substrate effect of submicron MOS transistors for RF operation and its parameter extraction with physically meaningful values are presented. The proposed substrate network model includes a single resistance and inductance originated from ring-type substrate contacts around active devices. Model parameters are extracted from S-parameter data measured from common-bulk configured MOS transistors with floating gate and use where needed with out any optimization. The proposed modeling technique has been applied to various-sized MOS transistors. Excellent agreement the measurement data and the simulation results using extracted substrate network model up to 30GHz.

  • PDF