• Title/Summary/Keyword: varied flow

Search Result 1,100, Processing Time 0.028 seconds

Effect of Feeding Rate for Operation Properties of Centrifugal Thin Film Evaporator (급액속도가 원심식 박막증발기의 운전 특성에 미치는 영향)

  • Kim, Byeong-Sam;Park, Noh-Hyun;Park, Moo-Hyun;Han, Bong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.437-441
    • /
    • 1991
  • During the evaporation of garlic juice by centrifugal thin film evaporator (Centri-Therm, CT-1B), the effect of feeding rate was investigated for its operation properties. On the process condition of feeding rate of 25 to 125 kg/h, theoretical average thickness of the garlic juice film on the rotating cone and residence time of the juice in the evaporator varied in the range of 0.52 to 0.89 mm and 1.77 to 6.75 second, respectively. And the flow of garlic juice was considered as a streamline flow by Reynolds number. At constant temperatures of steam and juice evaporation, concentration ratio decreased with the increase of the feeding rate. But the evapoartion rate and overall heat transfer coefficient increased with the increase of the feeding rate until the feeding rate reached a certain value and then decreased. On the conditions of $25{\leq}$feeding rate ${\leq}125\;kg/h$, evaporation temperature of $40^{\circ}C$, $95{\leq}steam$ $temperature≤120^{\circ}C$ and initial feed concentration of $32^{\circ}Brix$, concentration ratio and overall heat transfer coefficient were $1.04{\sim}2.04\;and\;3,074.33{\sim}17,614.70kJ/m^{2}{\cdot}h{\cdot}^{\circ}C$.

  • PDF

Evaluation of Flow and Engineering Properties of High-Volume Supplementary Cementitious Materials Lightweight Foam-Soil Concrete (하이볼륨 혼화재 경량기포혼합토 콘크리트의 유동성 및 공학적 특성 평가)

  • Shim, Sang-Woo;Yang, Keun-Hyeok;Lee, Kyung-Ho;Yun, In-Gu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 2014
  • The present study prepared lightweight foam-soil concrete mixtures classified into three groups. Considering the sustainablility, workability, and compressive strength development of such concrete, high-volume supplementary cementitious materials (SCMs) were used as follows: 20% cement, 15% fly ash, and 65% ground granulated blast-furnace slag. As main test parameters selected for achieving the compressive strength of 1MPa and dry density of $1,000kg/m^3$, the unit solid content (dredged soil and binder) ranged between 900 and $1,807kg/m^3$, and soil-to-binder ratio varied between 3.0 and 7.0. Test results revealed that the flow of the lightweight foam-soil concrete tended to decrease with the increase of unit soil content. The compressive strength of such concrete increased with the increase with the unit binder content, whereas it decreased as soil-to-binder ratio increased, indicating that the compressive strength can be formulated as a function of its dry density and soil-to-binder ratio.

Separation of Soybean Protein by Free-flow Electrophoresis (자유유동 전기이동법에 의한 대두단백질 분리)

  • 한재갑;류화원
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.63-70
    • /
    • 1995
  • The effect of operating conditions on separation of soybean proteins in a home-made free-flow electrophoresis apparatus was investigated. Measurement of the pH, conductivity, and UV-absorbance(280 nm) were carried out at each run and the purity of the sample was tested with SDS-PAGE analysis. The soybean extract pretreated with Tris and boric acid was mixed with the amino acids composed of glutamic acid, histidine, arginine, glycine(1 mM each) with glycyl-glycine(2mM) and KCl(1mM). When the cellulose acetate was used as a compartment between the electrode and the buffer solution in the cell, pH distribution in the separation cell varied from 3.0 at the anodic side to 8.0 at the cathodic side and had two inflection point. The applied voltage was from 300V to 1000V and the separation was better at a higher voltage but the voltage was limited by the capability of the cooling system due to Joule heat. The proteins focused near the middle of the channel. From the change of pH and conductivity it was found that the ions in the channel moved out to the electrodes through the membrane. In the case when the concentration of the buffer solution was increased 5 times, proteins were focused at 300V. We could not increase up to the ten times of the concentration since the temperature difference between inlet and outlet was more than $25^{\circ}C$ and denaturation of proteins was expected. When ion-exchange membranes were used U-type pH distribution was set up due to the ionic polarization near the membrane. The commercial ampholytes, instead of the mixed amino acids showed not much improvements in purity of the separated sample.

  • PDF

[O2/N2] Plasma Etching of Acrylic in a Multi-layers Electrode RIE System (다층 RIE Electrode를 이용한 아크릴의 O2/N2 플라즈마 건식 식각)

  • Kim, Jae-Kwon;Kim, Ju-Hyeong;Park, Yeon-Hyun;Joo, Young-Woo;Baek, In-Kyeu;Cho, Guan-Sik;Song, Han-Jung;Lee, Je-Won
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.642-647
    • /
    • 2007
  • We investigated dry etching of acrylic (PMMA) in $O_2/N_2$ plasmas using a multi-layers electrode reactive ion etching (RIE) system. The multi-layers electrode RIE system had an electrode (or a chuck) consisted of 4 individual layers in a series. The diameter of the electrodes was 150 mm. The etch process parameters we studied were both applied RIE chuck power on the electrodes and % $O_2$ composition in the $N_2/O_2$ plasma mixtures. In details, the RIE chuck power was changed from 75 to 200 W.% $O_2$ in the plasmas was varied from 0 to 100% at the fixed total gas flow rates of 20 sccm. The etch results of acrylic in the multilayers electrode RIE system were characterized in terms of negatively induced dc bias on the electrode, etch rates and RMS surface roughness. Etch rate of acrylic was increased more than twice from about $0.2{\mu}m/min$ to over $0.4{\mu}m/min$ when RIE chuck power was changed from 75 to 200 W. 1 sigma uniformity of etch rate variation of acrylic on the 4 layers electrode was slightly increased from 2.3 to 3.2% when RIE chuck power was changed from 75 to 200 W at the fixed etch condition of 16 sccm $O_2/4\;sccm\;N_2$ gas flow and 100 mTorr chamber pressure. Surface morphology was also investigated using both a surface profilometry and scanning electron microscopy (SEM). The RMS roughness of etched acrylic surface was strongly affected by % $O_2$ composition in the $O_2/N_2$ plasmas. However, RIE chuck power changes hardly affected the roughness results in the range of 75-200 W. During etching experiment, Optical Emission Spectroscopy (OES) data was taken and we found both $N_2$ peak (354.27 nm) and $O_2$ peak (777.54 nm). The preliminarily overall results showed that the multi-layers electrode concept could be successfully utilized for high volume reactive ion etching of acrylic in the future.

Assessment of Rainfall-Sediment Yield-Runoff Prediction Uncertainty Using a Multi-objective Optimization Method (다중최적화기법을 이용한 강우-유사-유출 예측 불확실성 평가)

  • Lee, Gi-Ha;Yu, Wan-Sik;Jung, Kwan-Sue;Cho, Bok-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1011-1027
    • /
    • 2010
  • In hydrologic modeling, prediction uncertainty generally stems from various uncertainty sources associated with model structure, data, and parameters, etc. This study aims to assess the parameter uncertainty effect on hydrologic prediction results. For this objective, a distributed rainfall-sediment yield-runoff model, which consists of rainfall-runoff module for simulation of surface and subsurface flows and sediment yield module based on unit stream power theory, was applied to the mesoscale mountainous area (Cheoncheon catchment; 289.9 $km^2$). For parameter uncertainty evaluation, the model was calibrated by a multi-objective optimization algorithm (MOSCEM) with two different objective functions (RMSE and HMLE) and Pareto optimal solutions of each case were then estimated. In Case I, the rainfall-runoff module was calibrated to investigate the effect of parameter uncertainty on hydrograph reproduction whereas in Case II, sediment yield module was calibrated to show the propagation of parameter uncertainty into sedigraph estimation. Additionally, in Case III, all parameters of both modules were simultaneously calibrated in order to take account of prediction uncertainty in rainfall-sediment yield-runoff modeling. The results showed that hydrograph prediction uncertainty of Case I was observed over the low-flow periods while the sedigraph of high-flow periods was sensitive to uncertainty of the sediment yield module parameters in Case II. In Case III, prediction uncertainty ranges of both hydrograph and sedigraph were larger than the other cases. Furthermore, prediction uncertainty in terms of spatial distribution of erosion and deposition drastically varied with the applied model parameters for all cases.

Comparative Study on Recovery of Nickel by Ion Exchange and Electrodialysis (이온교환과 전기투석을 이용한 니켈회수의 비교연구)

  • Sim, Joo-Hyun;Seo, Hyung-Joon;Seo, Jae-Hee;Kim, Dae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.640-647
    • /
    • 2006
  • It is difficult to treat wastewater involved in heavy metal in electroplating industry. Recently, many industries adopt the clean technology to prevent production of pollutant in the process or reuse after the appropriate pollutant treatment. In this study, we estimate the ability of recovery of nickel and the efficiency using lab-scale ion exchange and electrodialysis process with electroplating industry wastewater. In the ion exchange experiments with 5 types of resin, the result showed that S 1467(gel-type strong acidic cation exchange resin) has the highest exchange capacity. And it showed that the 4 N HCl has the highest in regeneration efficiency and maximum concentration in the regeneration experiments with various kinds md concentration of the regenerant. During the electrodialysis experiments, we varied the current density, the concentration of electrode rinse solution, the flow rate of concentrate and electrode rinse solution in order to find the optimum operating condition. As a result, we obtained $250A/m^2$ of current density, 2 N $H_2SO_4$ of concentration of electrode rinse solution, 30 mL/min of flow rate of concentrate and electrode rinse solution as the best operating conditions. We performed the scale-up experiments on the basis of ion exchange and electrodialysis experiments. And we obtained the experimental result that exchange capacity of S 1467 was 1.88 eq/L resin, and regeneration efficiency was 93.7% in the ion exchange scale-up experiment, we also got the result that concentration and dilution efficiency increased, and current efficiency kept constant in the scale-up experiments.

A Study on the Ozone Consumption Rate for Drinking Water Treatment Process with Ozone Application (오존의 정수처리 적용을 위한 오존소비인자에 관한 연구)

  • Kang, Tae-Hee;Oh, Byung-Soo;Kwon, Soon-Buhm;Sohn, Byeong-Yong;Kang, Joon-Wun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.663-669
    • /
    • 2005
  • The aim of this study was to investigate the ozone decay pattern for the effective application of ozone in drinking water treatment. In order to measure the ozone decomposition in water, ozone measuring instrument was developed with flow injection analysis (FIA) method. From the result of continuous residual ozone concentration in water, it was confirmed that the ozone decay pattern was divided with instantaneous ozone demand(I.D) and pseudo first-order rate($k_c$) phases, which were influenced by the variation of ozone dose. The empirical model obtained from I.D and $k_c$ values enabled us to predict the residual ozone concentration according to the reaction time, showing the high correlation between model and experimental values. The concentration of OH radical and $R__{ct}$ could be indirectly measured by OH radical probe compound. In both I.D and $k_c$ phases, the production pattern of OH radical could be observed, which was also affected by the variation of ozone dose. Finally, it was confirmed that the ozone consumption rate was varied according to the each drinking water treatment process and seasoning. Therefore, the optimum position and dosage of ozone have to be selected by considering various factors.

Study on Applicability of River Revetment Design for consideration of Velocity Variation due to Meandering and Scour Effect (만곡 및 세굴 영향에 의한 유속변화를 고려한 호안설계방법 적용성 검토)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.17-25
    • /
    • 2016
  • Revetments help protect levee slopes from erosion. If the design of the revetment is not appropriate, the levee may collapse as a result of scouring due to the strong flow velocity and tractive force. Therefore, when designing a revetment, it is very important to calculate the representative velocity. However, the average velocity and depth calculated by 1-D varied flow analysis are generally applied to the design, which do not reflect the increase in velocity caused by the free and force vortex. Therefore, it is necessary to correct the representative velocity in order to ensure the stability of the revetment in a meandering channel. In this study, the applicability of the method of calculating the representative velocity considering the curve and scour was studied (by comparing it with) the average and maximum velocities determined by numerical simulation. The representative velocity corrected for the effect of the curve and scour and the maximum velocity calculated by the numerical simulation were found to match quite well. In addition, the riprap size of the gabion in the meandering and straight channels were compared by applying them to the conventional design formulas. In the future, it is necessary to perform additional numerical simulations for various rivers with different characteristics, in order to propose a method of designing a suitable revetment for Korean characteristics. At this time, the results of this study are expected to be able to be used as basic data.

Characteristic of PECVD-$WN_x$ Thin Films Deposited on $Si_3N_4$ Substrate ($Si_3N_4$ 기판 위에 PECVD 법으로 형성한 Tungsten Nitride 박막의 특성)

  • Bae, Seong-Chan;Park, Byung-Nam;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.17-25
    • /
    • 1999
  • Tungsten nitride($WN_x$) films were deposited by PECVD method on silicon nitride($WSi_3N_4$) substrate. The characteristics of $WN_x$ film were investigated with changing various processing parameters ; substrate temperature, gas flow rate, rf power, and different nitrogen sources. The nitrogen composition in $WN_x$ film varied from 0 to 45% according to the $NH_3$ and $N_2$ flow rate. The highest deposition rate of 160 nm/min was obtained for the $NH_3$ gas and relatively low deposition rate of $WN_x$ films were formed by $N_2$ gas. $WN_x$ films deposited on $WSi_3N_4$ substrate had higher deposition rate than that of TiN and Si substrates. The purity of $WN_x$ film were analyzed by AES and higher purity $WN_x$ films were deposited using $NH_3$ gas. The XRD analysis indicates a phase transition from polycrystalline tungsten(W) to amorphous tungsten nitride($WN_x$), showing improved etching profile of $WN_x$ films Thick $WN_x$ films were deposited on various substrates such as Tin, NiCr and Al and maximum thickness of $1.6 {\mu}m$ was obtained on the Al adhesion layer.

  • PDF

The Fundamental Study of Strength and Drying Shrinkage on Alkali-activated Slag Cement Mortar with Different Entering Point of Fine Aggregate (잔골재의 투입시점에 따른 알칼리 활성화 슬래그 모르타르의 강도와 건조수축에 대한 기초적 연구)

  • Kim, Tae-Wan;Eom, Jang-Sub;Seo, Ki-Young;Park, Hyun-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.117-125
    • /
    • 2014
  • This paper examines the fundamental properties of alkali-activated slag cement (AASC) activated by sodium hydroxide (NaOH). The water to binder (W/B) ratio was 0.4 and 0.5. And concentration of activator were 2M and 4M. Five mix design of each W/B ratios was considered. The N0 mixture was KS L 5109 method and N1~N4 were varied in different mixing time, mix step and entering points of fine aggregate. Test results clearly showed that the flow value, strength and drying shrinkage development of AASC were significantly dependent on the entering point of fine aggregate. The flow value tended to decreases with delaying entering point of fine aggregate. The compressive strength and flexural strength increases with delaying entering point. Moreover, the XRD analysis confirmed that there were sustain these results. The drying shrinkage increases with delaying entering point of fine aggregate. Futhermore, a modified mixing method incorporating all hereby experimentally derived parameters, is proposed to improvement the physical properties of AASC.