• Title/Summary/Keyword: variation in 3-D

Search Result 1,931, Processing Time 0.032 seconds

Effect of the Red Pepper Seed Contents on the Chemical Composition of Kochujang (고추씨 함량이 고추장 성분에 미치는 영향)

  • 이석건
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.293-298
    • /
    • 1984
  • Kochujangs (red pepper pastes) were mashed with the variation of seed content in the red pepper powder, i.e. none (plot A), 10%(B), 20%(C), 40 %(D) and 50%(E), and chemical compositions and qualities of the products were analysed and compared. Contents of amino nitrogen, reducing sugar and ethanol were high in the plot A and B, whereas lower levels were detected in the plot C, D and E. Differences in the contents of moisture, crude protein, crude fiber and sodium chloride were not significant among the plots, however, the plot D and E showed higher crude oil contents and pH as compared with the others. The plot B and A showed higher acidic protease and saccharogenic amylase activity as compared with the others. Taste, flavor and color were evaluated for the products which aged for 3 months, and better results were obtained in the plot A and B than in D and E. Especially the products of D and E were inferior in color.

  • PDF

Analysis of Breakdown voltage for Trench D-MOSFET using MicroTec (MicroTec을 이용한 Trench D-MOSFET의 항복전압 분석)

  • Jung, Hak-Kee;Han, Ji-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1460-1464
    • /
    • 2010
  • In the paper, the breakdown voltage of Trench D-MOSFET have been analyzed by using MircoTec. The technology for characteristic analysis of device for high integration is changing rapidly. Therefore to understand characteristics of high-integrated device by computer simulation and fabricate the device having such characteristics became one of very important subjects. A Trench MOSFET is the most preferred power device for high voltage power applications. The oxide thickness and doping concentration in Trench MOSFET determines breakdown voltage and extensively influences on high voltage. We have investigated the breakdown voltage characteristics according to variation of doping concentration from $10^{15}cm^{-3}$ to $10^{17}cm^{-3}$ in this study. We have also investigated the breakdown voltage characteristics according to variation of oxide thickness and junction depth.

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구)

  • Woo, C.H.;Kim, J.S.;Choi, H.I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO (공동의 폭 변화에 따른 3차원 초음속 공동 유동연구)

  • Woo, C.H.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.

Cooling and Deformation Analysis of a Layered Road in a FDM Type 3D Printing Through Thermal-structural Coupled Simulation

  • Kim, S.L.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.52 no.3
    • /
    • pp.216-223
    • /
    • 2017
  • The additive manufacturing technology, also called 3D printing, is growing fast. There are several methods for 3D printing. Fused deposition modeling (FDM) type 3D printing is the most popular method because it is simple and inexpensive. Moreover, it can be used for printing various thermoplastic materials. However, it contains the cooling of layered road and causes thermal shrinkage. Thermal shrinkage should be controlled to obtain high-quality products. In this study, temperature distribution and cooling behavior of a layered road with cooling are studied through computer simulation. The thermal shrinkage of the layered road was simulated using the calculated temperature distribution with time. Shape variation of the layered road was predicted as cooling proceeded. Stress between the bed and the layered road was also predicted.This stress was considered as the detaching stress of the layered road from the bed. The simulations were performed for various thermal conductivities and temperatures of the layered road, bed temperature, and chamber temperature of a 3D printer. The simulation results provide detailed information about the layered road for FDM type 3D printing under operational conditions.

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

Seasonal Fluctuation and Vertical Microdistribution of Drosophilid Flies Dwelling in the Broad-Leaved Forests on Cheju-Do (Quelpart Island)* (제주도 활엽수림에 서식하는 초파리의 계절에 따른 변동과 수직 미분포)

  • 김원택
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.325-336
    • /
    • 1996
  • Community organization of the drosophilid flies was investigated with respect to the seasonal variation in species abundance and vertical microdistribution on the basis of the trapped collections in the two natural forests on Cheju-do from May to October 1994. The dominant species were Drosophila bizonata, D. curviceps, D. lutescens, D. angu leris, D. tsigana and D. immigrans in the annual collections. The pattern in seasonal changes of the dominant species was similar at the two survey sites. Seasonal fluctuation in the species diversity was more affected by evenness than by species richness (number of species). The seasonal variation of abundance showed an unimodal pattern in all of the dominant species. The seasonal patterns of vertical microdistribution revealed difference in some of the dominant species between the two survey sites. These results suggest that the predominant species in the forest avoid niche overlap by means of seasonal separation of breedings and that the vertical microdistribution is strongly affected by factors associated with season and vertical site in the deep wooded forests.

  • PDF

Analysis of Depth Map Resolution for Coding Performance in 3D Video System (깊이영상 해상도 조절에 따른 3 차원 비디오 부호화 성능 분석)

  • Lee, Do Hoon;Yang, Yun mo;Oh, Byung Tae
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.452-454
    • /
    • 2015
  • This paper provides the coding performance comparisons of depth map resolution in 3D video system. In multiview plus depth map system, depth map is used for synthesis view rendering, and affects to synthesis views quality. In the paper, we show the experimental results as depth map resolution in 3D video system, and show performance variation as dilation filter.

  • PDF

The variation of biomimetic knee joint movement according to 3D shape information (3차원 형상정보에 따른 생체모방형 무릎관절 구동의 변화)

  • Jeong, Hoon-Jin;Lee, Seung-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.3
    • /
    • pp.81-86
    • /
    • 2015
  • We fabricated a 3D knee joint model through the imaging processing. The 3D shape information is different depends on specific conditions when the shape of real knee joint is extracted from CT/MRI sliced images. The two types of joint models were fabricated by using 3D printer in order to analysis of joint movement by slight difference of 3D shape information. The compressive force experiments were performed by using knee joint model. As the results, the compressive forces were changed with respect to the difference of geometry. Consequently, feasibility test should be performed before developing biomimetic bioreactor.

Effects of Angular Velocity Change on the Flow Field and Heat Transfer in the Bridgman Crystal Growth Process (Bridgman 결정성장공정에서 각속도변화가 유동장 및 열전달에 미치는 영향)

  • 문승재;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.771-783
    • /
    • 1995
  • A simplified model for the so-called ACRT(accelerated crucible rotation technique) Bridgman crystal growth was considered in order to investigate the principal effects of the periodic variation of angular velocity. Numerical solutions were obtained for Ro=0.5, Ra=4.236*10$_{6}$ and E=2.176*10$^{-3}$ . The effects of spin-up process combined with natural convection was investigated as a preliminary study. The spin-up time scale for the present problem was a little larger than that observed for homogeneous spin-up problems. Numerical results reveal that over a time scale of (H$^{2}$/.nu..omega.$_{f}$)$^{1}$2/ the forced convection due to the formation of Ekman layer predominates. When the state of rigid body rotation is attained, natural convection due to buoyancy emerges as the main driving force and them the steady-state is approached asymptotically. Based on our preliminary results with simple spin-up, several fundamental features associated with variation of rotation speed are successfully identified. When a periodic variation of angular velocity was imposed, the system response was also periodic. Due to effect of mixing, the heat transfer was enlarged. From the analysis of time-averaged Nusselt number along the bottom surface the effect of a periodic variation of angular velocity on the interface location could be indirectly identified.d.