• Title/Summary/Keyword: variable renewable energy

Search Result 133, Processing Time 0.029 seconds

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.

Measuring the Efficiency of Investment in the Deployment and Technology Development of Renewable Energy in Korea Using the DEA (DEA를 이용한 국내 신재생에너지 보급 및 기술개발 투자의 효율성 분석)

  • Kim, Hong-Hee;Lee, Deok-Joo;Kim, Kyung-Taek;Park, Sung-Joon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.4
    • /
    • pp.358-365
    • /
    • 2014
  • The purpose of this paper is to analyze the efficiency of government investment in the deployment and technological development of three technological areas - wind power, photovoltaic and fuel cell - of renewable energy in Korea using the DEA (data envelopment analysis). The efficiencies of government investment in renewable energies are measured and compared among three kinds of technologies using the actual data during 2007~2009. In the present DEA model, R&D investment and government subsidies for renewable energy usage promotion are selected as input variables, and the number of patents, supply level, and the production cost as output variable. As a result, it is found that the wind power is the most efficient renewable energy in Korea in the perspective of the efficiency of government investment.

Analysis of the Effect on Domestic PV Capacity under the REC Revision and Mandatory Supply (REC 개정과 의무공급량이 국내 태양광 설비량에 미치는 영향 분석)

  • Beak, Hun;Kim, Taesung
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.139-150
    • /
    • 2021
  • Currently, the RPS(Renewable Portfolio Standard) is the policy which supplies new and renewable energy. Power generation companies with large capacity should produce renewable energy or secure through the purchase of REC (Renewable Energy Certificates) as mandatory. The government has revised the REC weight several times, which weights each energy source by evaluating the economic and social value of renewable energy sources, and revised the mandatory supply ratio to gradually increase. This study helps to find the impact of policies on related industries. In this study, time-series analysis and regression analysis on the capacity of PV(Photovoltaics) facilities as a dependent variable were performed to analyze the effect of the revision of the REC weight for photovoltaic power generation and the amount of mandatory supply for renewable energy. As a result, it was statistically assessed that the revision of the REC weight and the increase in the mandatory supply has a significant effect on the increase in the amount of PV facilities.

Simultaneous Planning of Renewable/ Non-Renewable Distributed Generation Units and Energy Storage Systems in Distribution Networks

  • Jannati, Jamil;Yazdaninejadi, Amin;Talavat, Vahid
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.111-118
    • /
    • 2017
  • The increased diversity of different types of energy sources requires moving towards smart distribution networks. This paper proposes a probabilistic DG (distributed generation) units planning model to determine technology type, capacity and location of DG units while simultaneously allocating ESS (energy storage systems) based on pre-determined capacities. This problem is studied in a wind integrated power system considering loads, prices and wind power generation uncertainties. A suitable method for DG unit planning will reduce costs and improve reliability concerns. Objective function is a cost function that minimizes DG investment and operational cost, purchased energy costs from upstream networks, the defined cost to reliability index, energy losses and the investment and degradation costs of ESS. Electrical load is a time variable and the model simulates a typical radial network successfully. The proposed model was solved using the DICOPT solver under GAMS optimization software.

Application of differential transformation method for free vibration analysis of wind turbine

  • Bozdogan, Kanat Burak;Maleki, Farshid Khosravi
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.11-17
    • /
    • 2021
  • In recent years, there has been a tendency towards renewable energy sources considering the damages caused by non-renewable energy resources to nature and humans. One of the renewable energy sources is wind and energy is obtained with the help of wind turbines. To determine the behavior of wind turbines under earthquake loads, dynamic characteristics are required. In this study, the differential transformation method is proposed to determine the free vibration analysis of wind turbines with a variable cross-section. The wind turbine is modeled as an equivalent variable continuous flexural beam and blade weight is considered as a point mass at the top of the structures. The differential equation representing the free vibration of the wind turbine is transformed into an algebraic equation with the help of differential transformation method and the angular frequencies and the mode shapes of the wind turbine are obtained by the help of the differential transformation method. In the study, a sample taken from the literature was solved with the presented method and the suitability of the method was investigated. The same wind turbine example also modeled by finite element modelling software, ABAQUS. Results of the finite element model and differential transformation method are compared with each other and the results are in good agreement.

The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan (에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로)

  • Jeon, Wooyoung;Cho, Sangmin;Cho, Ilhyun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.2
    • /
    • pp.237-268
    • /
    • 2021
  • As variable renewable sources rapidly increase due to the Energy Transition plan, integration cost of renewable sources to the power system is rising sharply. The increase in variable renewable energy reduces the capacity factor of existing traditional power capacity, and this undermines the efficiency of the overall power supply, and demand resources are drawing attention as a solution. In this study, we analyzed how much electric vehicle demand resouces, which has great potential among other demand resources, can reduce power supply costs if it is used as a flexible resource for renewable generation. As a methodology, a stochastic form of power system optimization model that can effectively reflect the volatile characteristics of renewable generation is used to analyze the cost induced by renewable energy and the benefits offered by electric vehicle demand resources. The result shows that virtual power plant-based direct control method has higher benefits than the time-of-use tariff, and the higher the proportion of renewable energy is in the power system, the higher the benefits of electric vehicle demand resources are. The net benefit after considering commission fee for aggregators and battery wear-and-tear costs was estimated as 67% to 85% of monthly average fuel cost under virtual power plant with V2G capability, and this shows that a sufficient incentive for market participation can be offered when a rate system is applied in which these net benefits of demand resources are effectively distributed to consumers.

Study on the Aerodynamics and Control Characteristics of 5 MW Wind Turbine (5MW급 풍력 터빈의 공력 및 제어 특성에 관한 연구)

  • Tai, Fengzhu;Kang, Ki-Won;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.59-69
    • /
    • 2011
  • 5MW wind turbine is regarded as a promising system for offshore wind farms in the western sea of Korean. And the wind turbine is developed in many companies but not much information is known about it. In this study, aerodynamics and control characteristics depending on several control methods is reviewed on 5MW wind turbine, in which configuration data of the turbine are used from the previous study of NREL. For the calculations, GH_Bladed, which is certificated software by GL, is used and compared with data from FAST code of NREL. This study shows that how much power production, and aerodynamic performances and loads can be obtained with different controls in the operation of 5MW wind turbine, which is expected to be useful in the design of the wind turbine system.

Performance Analysis of 10kW Class Propeller Hydro Turbine by the Change of Flow Rates and the Number of Runner Vane Using CFD (CFD를 이용한 10kW급 모델 실험용 프로펠러 수차의 유량 및 러너 베인 깃 수 변화에 따른 성능해석)

  • Park, Ji-Hoon;Kim, You-Taek;Cho, Yong;Kim, Byeong-Kon;Lee, Young-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Small hydro power, among other renewable energy resources, has been evaluated to have enough development value because it is a clean, renewable and abundant energy resource. In addition, small hydro power has the advantage of low cost development by using existing facilities like sewage treatment plants, water works and similar resources. But in the case of small hydro power systems, there are problems with degraded operation efficiency of turbine due to changes in flow rates. In order to overcome this, variable speed control can be achieved by using the power rectifier and permanent magnetic synchronous generator(PMSG) as a possible method to respond to the changes in flow rates. In this study, a commercial ANSYS CFD code was used to analyze the performance of 10kW class propeller hydro turbine and to also investigate flow characteristics at variable flow rates and runner vane.

A Study on Probabilistic Production Costing for Solar Cell Generators (태양광발전원의 확률론적인 발전비용 산정에 관한 연구)

  • Park, Jeong-Je;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.700-707
    • /
    • 2009
  • The application of renewable energy in electric power systems is growing rapidly in order to make provision for the inequality of the climate, the dwindling supplies of coal, oil and natural gas and a further rise in oil prices. Solar cell generators(SCG) is one of the fastest growing renewable energy. This paper presents a methodology on probabilistic production cost simulation of a power system including SCGs. The generated power by SCGs is variable due to the random variation of solar radiation. In order to solve this problem, the SCGs is modeled as multi-state operational model in this paper. Probabilistic production cost of a power system can be calculated by proposed method considering SCGs with multi-state. The results show that the impacts of SCGs added to a power system can be analyzed in view point of production cost using the proposed method.

Characteristics of Filters for Signal Processing Applied to Wind Turbine Controllers (풍력발전 제어에 적용되는 계측신호처리 필터에 대한 특성 고찰)

  • Moon, Seok-Jun;Shin, Yun-Ho;Chung, Tae-Young;Rim, Chae-Whan;Ryu, Ji-Yune
    • New & Renewable Energy
    • /
    • v.7 no.4
    • /
    • pp.58-65
    • /
    • 2011
  • In variable-speed variable-pitch wind turbines, the conventional approach for controlling power-production operation relies on a generator-torque controller and a rotor-collective blade-pitch controller. Both controllers use the generator speed measurement as the sole feedback input. In order to mitigate unwanted excitation of the control system, many filters are adopted. In this study, the characteristics of some filters for signal processing are investigated based on frequency response function. They include low-pass filters, band-pass filters, and notch filters. Especially, this study focuses on design parameters of their filters.