• Title/Summary/Keyword: variable block mode

Search Result 51, Processing Time 0.03 seconds

Error Concealment Using Intra-Mode Information Included in H.264/AVC-Coded Bitstream

  • Kim, Dong-Hyung;Jeong, Se-Yoon;Choi, Jin-Soo;Jeon, Gwang-Gil;Kim, Seung-Jong;Jeong, Je-Chang
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.506-515
    • /
    • 2008
  • The H.264/AVC standard has adopted new coding tools such as intra-prediction, variable block size, motion estimation with quarter-pixel-accuracy, loop filter, and so on. The adoption of these tools enables an H.264/AVC-coded bitstream to have more information than was possible with previous standards. In this paper, we propose an effective spatial error concealment method with low complexity in H.264/AVC intra-frame. From information included in an H.264/AVC-coded bitstream, we use prediction modes of intra-blocks to recover a damaged block. This is because the prediction direction in each prediction mode is highly correlated to the edge direction. We first estimate the edge direction of a damaged block using the prediction modes of the intra-blocks adjacent to a damaged block and classify the area inside the damaged block into edge and flat areas. Our method then recovers pixel values in the edge area using edge-directed interpolation, and recovers pixel values in the flat area using weighted interpolation. Simulation results show that the proposed method yields better video quality than conventional approaches.

  • PDF

Zoom Motion Estimation Method Using Variable Block-Size (가변 블록크기의 신축 움직임 추정 방법)

  • Kwon, Soon-Kak;Jang, Won-Seok
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.916-924
    • /
    • 2014
  • It is possible to improve the accuracy of the motion estimation for a video by applying a variable block size. However, it has limits in the zoom motion estimation. In this paper, we propose a method for estimating the zoom motion with variable block size. The proposed method separates the background within the object picture by depth information obtained from a depth camera, and only the object regions are applied to zoom scale, but the background is not applied. In addition, the object regions select efficiently variable block size mode in consideration of the generated motion vectors and the accuracy of motion estimation at the same time. Simulation results show the accuracy of the motion estimation and the number of motion vectors for the proposed method. It is verified that the proposed method can reduce the number of motion while maintaining the similar accuracy of motion estimation than the conventional motion estimation methods.

VLC Table Selection Method using Prediction Mode in H.264 CAVLC (H.264 CAVLC에서 예측모드를 이용한 VLC 표 선택 방법)

  • Heo, Jin;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.791-792
    • /
    • 2008
  • We present a new algorithm for VLC table prediction in H.264 context-based adaptive variable length coding (CAVLC). Using both the correlation of coding modes and the statistics of the mode distribution in intra and inter frames, we can predict an appropriate VLC table of the given $4{\times}4$ block. Experimental results demonstrate that the proposed algorithm reduces the bit rate about 0.97% on average, compared to the H.264/AVC standard.

  • PDF

Variable Optical Attenuator using Optical Coupling between a Side Polished Fiber and Refractive Index Matching Liquid (측면 연마된 광섬유와 굴절률 정합액사이의 광결합을 이용한 가변 광 감쇠기)

  • Kim, Kwang-Taek;Song, Jae-Won
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.9
    • /
    • pp.50-55
    • /
    • 1999
  • In this paper we proposed a variable optical attenuator using the side polished fiber coupled with a refractive index matching liquid. Small variation of refractive index of matching liquid can induce very large change of optical loss due to the coupling between the fiber mode and radiation mode. The thermo-optic effect of matching liquid was used to ontrol the optical attenuation. The side polished fiber block was fabricated using the silicon V gloove. Experimental results showed that $5^{\circ}C$ temperature variation was enough to adjust full range attenuation. The polarization dependent loss and insertion loss of the fabricated devices were 0.5dB and 0.2dB respectively.

  • PDF

High-Speed Implementation to CHAM-64/128 Counter Mode with Round Key Pre-Load Technique (라운드 키 선행 로드를 통한 CHAM-64/128 카운터 모드 고속 구현)

  • Kwon, Hyeok-dong;Jang, Kyoung-bae;Park, Jae-hoon;Seo, Hwa-jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1217-1223
    • /
    • 2020
  • The Block cipher CHAM is lightweight block cipher for low-end processors, developed by National Security Research Institute from Korea. The mode of operation is necessity for efficient operation of block cipher, among them, the counter (CTR) mode has good efficiency because it is easy to implement and supporting parallel operation. In this paper, we propose the optimized implementation for block cipher CHAM-CTR. The proposed implementation can be skipped some rounds by pre-computation. Thus it has better calculating speed than existing CHAM. Also, this implementation pre-load some of round keys to registers, before entering round functions. It makes reduced 160cycles loading time for round key load. Finally, proposed implementation achieved higher performance about 6.8%, and 4.5% for fixed-key scenario, and variable-key scenario, respectively.

Fast Mode Decision using Block Size Activity for H.264/AVC (블록 크기 활동도를 이용한 H.264/AVC 부호화 고속 모드 결정)

  • Jung, Bong-Soo;Jeon, Byeung-Woo;Choi, Kwang-Pyo;Oh, Yun-Je
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.1-11
    • /
    • 2007
  • H.264/AVC uses variable block sizes to achieve significant coding gain. It has 7 different coding modes having different motion compensation block sizes in Inter slice, and 2 different intra prediction modes in Intra slice. This fine-tuned new coding feature has achieved far more significant coding gain compared with previous video coding standards. However, extremely high computational complexity is required when rate-distortion optimization (RDO) algorithm is used. This computational complexity is a major problem in implementing real-time H.264/AVC encoder on computationally constrained devices. Therefore, there is a clear need for complexity reduction algorithm of H.264/AVC such as fast mode decision. In this paper, we propose a fast mode decision with early $P8\times8$ mode rejection based on block size activity using large block history map (LBHM). Simulation results show that without any meaningful degradation, the proposed method reduces whole encoding time on average by 53%. Also the hybrid usage of the proposed method and the early SKIP mode decision in H.264/AVC reference model reduces whole encoding time by 63% on average.

Coding Efficiency Improvement By Applying Rate-Distortion Optimization To 3D-DCT Based Integral Image Compression Method (3D-DCT 기반 집적영상 압축 방법의 율-왜곡 최적화를 통한 부호화 효율 향상 방법)

  • Jeon, Ju-Il;Kang, Hyun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.9
    • /
    • pp.1-8
    • /
    • 2012
  • In this paper, we propose a rate-distortion optimization method to improve the coding efficiency of the conventional 3D-DCT based compression method using adaptive block mode selection for integral images. In the conventional 3D-DCT based compression method, 3D-DCT blocks of variable block sizes are adaptively selected depending on the characteristics of integral images, and then 3D-DCT is performed. The proposed method applies a rate-distortion optimization to determine the optimal block mode. In addition, we suggest the optimal Lagrangian parameter for integral images. Experimental results show that the proposed method gives bit-rate reduction of about 5%.

Low Area and High Performance Multi-mode 1D Transform Block Design for HEVC (HEVC를 위한 저면적 고성능 다중 모드 1D 변환 블록 설계)

  • Kim, Ki-Hyun;Ryoo, Kwang-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • This paper suggest an effective idea to implement an low area multi-mode one dimension transform block of HEVC(High Efficiency Video Coding). The time consuming multiplier path is designed to operate on low frequency. Normal multipliers dealing with variable operands are replaced with smaller constant multipliers which do the product with constant coefficient and variable only using shifters and adders. This scheme increases total multiplier counts but entire areas are reduced owing to smaller area of constant multiplier. Idle cycles caused by doubled multipliers enable to use multi-cycle paths on the cycle eating multiplier data path. Operating frequency is lowered by multi-cycle path but total throughput is maintained. This structure is implemented with TSMC 0.18 CMOS process library, and operated on 186MHz frequency to process a 4k($3840{\times}2160$) image. Max operating frequency is 300MHz.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.187-187
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF($2^8$) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

A Versatile Reed-Solomon Decoder for Continuous Decoding of Variable Block-Length Codewords (가변 블록 길이 부호어의 연속 복호를 위한 가변형 Reed-Solomon 복호기)

  • 송문규;공민한
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.3
    • /
    • pp.29-38
    • /
    • 2004
  • In this paper, we present an efficient architecture of a versatile Reed-Solomon (RS) decoder which can be programmed to decode RS codes continuously with my message length k as well as any block length n. This unique feature eliminates the need of inserting zeros for decoding shortened RS codes. Also, the values of the parameters n and k, hence the error-correcting capability t can be altered at every codeword block. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm (MEA). Since each step can be driven by a separate clock, the decoder can operate just as 2-step pipeline processing by employing the faster clock in step 2 and/or step 3. Also, the decoder can be used even in the case that the input clock is different from the output clock. Each step is designed to have a structure suitable for decoding RS codes with varying block length. A new architecture for the MEA is designed for variable values of the t. The operating length of the shift registers in the MEA block is shortened by one, and it can be varied according to the different values of the t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive technique and the over-clocking technique. The decoder can decodes codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications because of its versatility. The adaptive RS decoder over GF(2$^{8}$ ) having the error-correcting capability of upto 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.