• Title/Summary/Keyword: vapor-solid mechanism

Search Result 63, Processing Time 0.023 seconds

Characteristics of Friction and Wear of Metals Under Vapor Phase Lubrication (Vapor Phase Lubrication을 통한 금속의 마찰 및 마멸 특성)

  • 김대은;양지철;성인하
    • Tribology and Lubricants
    • /
    • v.18 no.2
    • /
    • pp.109-116
    • /
    • 2002
  • phase lubrication can be used as an alterative lubrication method to overcome the demerits of liquid and solid lubrications. In this work, the tribological characteristics of metals are investigated under vapor phase lubrication. It was found that the friction coefficient and wear volume can be controlled efficiently by the amount of vapor phase lubricant delivered to the sliding interface. The friction coefficient could be reduced to about 0.1 under vapor lubrication. Also, depending on the amount of vapor lubrication delivered to the system, the width of the wear track could be varied between 50 to 250 Um. It is shown that vapor phase lubrication mechanism is very effective to control the friction and wear phenomena without the use of excessive oil.

Distance between source and substrate and growth mode control in GaN nanowires synthesis (Source와 기판 거리에 따른 GaN nanowires의 합성 mode 변화 제어)

  • Shin, T.I.;Lee, H.J.;Kang, S.M.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • We synthesized GaN nanowires with high quality using the vapor phase epitaxy technique. The GaN nanowires were obtained at a temperature of $950^{\circ}C$. The Ar and $NH_3$ flow rates were 1000 sccm and 50 sccm, respectively. The shape of the GaN nanowires was confirmed through FESEM analysis. We were able to conclude that the GaN nanowires synthesized via vapor-solid (VLS) mechanism when the source was closed to the substrate. On the other side, the VS mechanism changed to vapor-liquid-solid (VLS) as the source and the substrate became more distant. Therefore, we can suggest that the large amount of Ga source from initial growth interrupt the role of catalyst on the substrate.

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1336-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

Growth of SiC nanowires by SLS growth mechanism (SLS 성장방법에 의한 SiC 나노와이어의 성장)

  • 노대호;김재수;변동진;진정근;김나리;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.116-116
    • /
    • 2003
  • Most of all nano-structures, SiC had a high electrical conductivity and mechanical strengths ay high temperatures. So It was considered a useful materials for nanosized device materials and added materials for strength hardening. Much methods were developed for SiC nanowire and nanorods like CVD, carbothermal reduction, Laser ablation and CNT-confined reduction. These methods used the VLS (Vapor-Liquid-Solid) growth mechanism. In these experiments, SiC nanowire was grown by SLS (Sold-Liquid-Solid) growth mechanism used Graphite substrate, And we characterized its microstructure to compare with VLS growth mechanism.

  • PDF

The Substrate Effects on Kinetics and Mechanism of Solid-Phase Crystallization of Amorphous Silicon Thin Films

  • Song, Yoon-Ho;Kang, Seung-Youl;Cho, Kyoung-Ik;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.19 no.1
    • /
    • pp.26-35
    • /
    • 1997
  • The substrate effects on solid-phase crystallization of amorphous silicon (a-Si) films deposited by low-pressure chemical vapor deposition (LPCVD) using $Si_2H_6$ gas have been extensively investigated. The a-Si films were prepared on various substrates, such as thermally oxidized Si wafer ($SiO_2$/Si), quartz and LPCVD-oxide, and annealed at 600$^{\circ}C$ in an $N_2$ ambient for crystallization. The crystallization behavior was found to be strongly dependent on the substrate even though all the silicon films were deposited in amorphous phase. It was first observed that crystallization in a-Si films deposited on the $SiO_2$/Si starts from the interface between the a-Si and the substrate, so called interface-interface-induced crystallization, while random nucleation process dominates on the other substrates. The different kinetics and mechanism of solid-phase crystallization is attributed to the structural disorderness of a-Si films, which is strongly affected by the surface roughness of the substrates.

  • PDF

Growth of ZnO nanorods by vapor-solid method (기상증착법을 이용한 산화아연 나노로드의 성장)

  • 김나리;김재수;변동진;노대호;진정근;양재웅
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.122-122
    • /
    • 2003
  • In recent years, there has been increasing interest in quasi one-dimensional nanostructural systems, because of their numerous potential applications in various areas, such as materials sciences, electronics, optics, magnetism and energy storage. Specifically, zinc oxide (ZnO) is recognized as one of the most promising oxide semiconductor materials, because of its good optical, electrical, and piezoelectrical properties. The ZnO nanorods were synthesized using vapor-solid (VS) mechanism on soda lime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of a Zn powder at 500. As-fabricated ZnO nanorods had an average diameter and length of 40nm and 3$\mu\textrm{m}$. Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The Photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380nm and a green emission at around 500nm.

  • PDF

Synthesis of Silicon Carbide Whiskers (II): Stacking Faults (탄화규소 휘스커의 (II): 적층결함)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Stacking faults in SiC whiskers grown by three different growth mechanisms; vapor-solid(VS), two-stage growth(TS), and vapor-liquid-solid (VLS) mechanism in the carbothermal reduction system were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The content of stacking faults in SiC whiskers increased with decreasing the diameter of whiskers, i.e., the small diameter whiskers (<1 $\mu\textrm{m}$) grown by the VS, TS, and VLS mechanisms have heavy stacking faults whereas the large diameter whiskers(>2$\mu\textrm{m}$) grown by the VLS mechanism have little stacking faults. Heavy stacking faults of small diameter whiskers was probably due to the high specific lateral surface area of small diameter whiskers.

  • PDF

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Synthesis and characterization of $SnO_2$ nanowires on Si substrates in a thermal chemical vapor deposition process (열화학기상증착법을 이용한 Si 기판 위의 $SnO_2$ 나노와이어 제작 및 물성평가)

  • Lee, Deuk-Hee;Park, Hyun-Kyu;Lee, Sam-Dong;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.91-94
    • /
    • 2007
  • Single-crystalline $SnO_2$ nanowires were successfully grown on Si(001) substrates via vapor-liquid-solid mechanism in a thermal chemical vapor deposition. Large quantity of $SnO_2$ nanowires were synthesized at temperature ranges of $950{\sim}1000^{\circ}C$ in Ar atmosphere. It was found that the grown $SnO_2$ nanowires are of a tetragonal rutile structure and single crystalline by diffraction and transmission electron microscopy measurements. Broad emission located at about 600 m from the grown nanowires was clearly observed in room temperature photoluminescence measurements, indicating that the emission band originated from defect level transition into $SnO_2$ nanowires.