• Title/Summary/Keyword: vapor-deposition

Search Result 2,864, Processing Time 0.031 seconds

INFRARED ABSORPTION MEASUREMENT DURING LOW-TEMPERATURE PECVD OF SILICON-OXIDE FILMS

  • Inoue, Yasushi;Sugimura, Hiroyuki;Takai, Osamu
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.297-302
    • /
    • 1999
  • In situ measurement of infrared absorption spectra has been performed during low-temperature plasma-enhanced chemical vapor depositiion of silicon-oxide films using tetramethoxysilane as a silicon source. Several absorption bands due to the reactant molecules are clearly observed before deposition. In the plasma, these bands completely disappear at any oxygen mixing ratio. This result shows that most of the tetramethoxysilane molecules are dissociated in the rf plasma, even C-H bonds. Existence of Si-H bonds in vapor phase and/or on the film surface during deposition has been found by infrared diagnostics. We observed both a decrease in Si-OH absorption and an increase in Si-O-Si after plasma off, which means the dehydration condensation reaction continues after deposition. The rate of this reaction is much slower than the deposition ratio of the films.

  • PDF

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

Semiconductor laser-based absorption spectroscopy for monitoring physical vapor deposition process (증기증착 공정 감시를 위한 반도체 레이저 흡수 분광학)

  • 정의창;송규석;차형기
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.59-64
    • /
    • 2004
  • A study on the semiconductor laser-based atomic absorption spectroscopy was performed for monitoring physical vapor deposition process. Gadolinium metal was vaporized with a high evaporation rate by electron beam heating. Real-time atomic absorption spectra were measured by using tunable semiconductor laser beam at 770-794 nm (center wavelength of 780 nm) and its second harmonic at 388-396 nm. Atomic densities of metal vapor can be calculated from the absorption spectra measured. We plot the atomic densities as a function of the electron beam power and compare with the evaporation rates measured by quartz crystal monitor. We demonstrate that the semiconductor laser-based spectroscopic system developed in this study can be applied to monitor the physical vapor deposition process for other metals such as titanium.

Selection of Heater Location in Linear Source for OLED Vapor Deposition (OLED 증착을 위한 선형증발원 히터 위치선정)

  • Joo, Young-Cheol;Han, Choong-Hwan;Um, Tai-Joon;Lee, Sang-Wook;Kim, Kug-Weon;Kwon, Kye-Si
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.515-518
    • /
    • 2008
  • Organic light emitting diode(OLED) is one of the most promising type of future flat panel display. A linear source is used to deposite organic vapor to a large size OLED substrate. An electric heater which is attached on the side of linear source heats the organic powder for the sublimation. The nozzle of heater, which is attached at the top of the linear source has an optimal temperature. An numerical analysis has been performed to find optimal heater position for the optimal nozzle temperature. A commercial CFD program, FLUENT, is used on the analysis. Two-dimensional and three-dimensional analysis have been performed. The analysis showed that the heater should be attached at the outer side of crucible wall rather than inner side of housing, which was original design. Eighteen milimeter from the top of the linear source was suggested as the optimal position of heater. Improving thermal performance of linear source not only helps the uniformity of organic vapor deposition on the substrate but also increase productibity of vapor deposition process.

Deposition properties of $Al_{2}O_{3}$ thin films by LP-MOCVD (LP-MOCVD로 제조한 알루미나 박막의 증착 특성)

  • 김종국;박병옥;조상희
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.3
    • /
    • pp.309-317
    • /
    • 1996
  • Al2O3 thin films were deposited on Si-wafer (100) using organo-aluminum compounds at low pressure by chemical vapor deposition (CVD) method. The vapor of the organo-metallic precursor was carried by pure N2 gas. The deposition rate increased and then saturated as Tsub increased with increasing the AIP flow rate. The main contamination didn't found in deposited films except carbon. The H-O(H2O) IR absorption band decreased in intensity as the deposition temperature increased, and completely disappeared through annealing.

  • PDF

Study on the Organic Gate Insulators Using VDP Method (VDP(Vapor Deposition Polymerization) 방법을 이용한 유기 게이트 절연막의 대한 연구)

  • Pyo, Sang-Woo;Shim, Jae-Hoon;Kim, Jung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.185-190
    • /
    • 2003
  • In this paper, it was demonstrated that the organic thin film transistors were fabricated by the organic gate insulators with vapor deposition polymerization (VDP) processing. In order to form polyimide as a gate insulator, vapor deposition polymerization process was also introduced instead of spin-coating process, where polyimide film was co-deposited by high-vacuum thermal evaporation from 4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-oxydianiline (ODA) and 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and ODA, and cured at $150^{\circ}C$ for 1hr. Electrical output characteristics in our organic thin film transistors using the staggered-inverted top-contact structure obtained to the saturated slop in the saturation region and the subthreshold non-linearity in the triode region. Field effect mobility, threshold voltage, and on-off current ratio in $0.45\;{\mu}m$ thick gate dielectric layer were about $0.17\;cm^2/Vs$, -7 V, and $10^6\;A/A$, respectively. Details on the explanation of compared to organic thin-film transistors (OTFTS) electrical characteristics of ODPA-ODA and 6FDA-ODA as gate insulators by fabricated thermal co-deposition method.

  • PDF

Metal Organic Chemical Vapor Deposition Characteristics of Germanium Precursors (Metal Organic Chemical Vapor Deposition법을 이용한 Germanium 전구체의 증착 특성 연구)

  • Kim, Sun-Hee;Kim, Bong-June;Kim, Do-Heyoung;Lee, June-Key
    • Korean Journal of Materials Research
    • /
    • v.18 no.6
    • /
    • pp.302-306
    • /
    • 2008
  • Polycrystalline germanium (Ge) thin films were grown by metal organic chemical vapor deposition (MOCVD) using tetra-allyl germanium [$Ge(allyl)_4$], and germane ($GeH_4$) as precursors. Ge thin films were grown on a $TiN(50nm)/SiO_2/Si$ substrate by varying the growth conditions of the reactive gas ($H_2$), temperature ($300-700^{\circ}C$) and pressure (1-760Torr). $H_2$ gas helps to remove carbon from Ge film for a $Ge(allyl)_4$ precursor but not for a $GeH_4$ precursor. $Ge(allyl)_4$ exhibits island growth (VW mode) characteristics under conditions of 760Torr at $400-700^{\circ}C$, whereas $GeH_4$ shows a layer growth pattern (FM mode) under conditions of 5Torr at $400-700^{\circ}C$. The activation energies of the two precursors under optimized deposition conditions were 13.4 KJ/mol and 31.0 KJ/mol, respectively.

A Study on the Life Enhancement of TiN Coated Drill (TiN 박막을 코팅한 드릴의 수명향상에 관한 연구)

  • 김홍우;김문일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2340-2348
    • /
    • 1992
  • Recently, various film coated insert tools have been used in order to improve tool life by several different vapor deposition or chemical vapor deposition. Especially, TiN coated drills have been broadly studied because of improving drill performance in terms of drill life, work quality and its brilliant color. Nevertheless, because of the poor adhesion between TiN film and drill, it was difficult to attain the better drill performance. Therefore, to improve adhesion of TiN films, we sputtered titanium as interlayer prior to TiN deposition on drill by PECVD(Plasma Enhanced Chemical Vapor Deposition). The results indicate that Ti/TiN coated drills achieve about 2.6 times life improvement, while TiN coated drills only 2 times. Wear characteristics of tested drills were examined using SEM, and the results were correlated with drill life and roughness of drilled holes.

Development of Highly Conductive and Corrosion-Resistant Cr-Diamond-like Carbon Films

  • Ko, Minjung;Jun, Yee Sle;Lee, Na Rae;Kang, Suhee;Moon, Kyoung Il;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.3
    • /
    • pp.317-324
    • /
    • 2019
  • Cr-diamond-like carbon (Cr-DLC) films were deposited using a hybrid method involving both physical vapor deposition and plasma-enhanced chemical vapor deposition. DLC sputtering was carried out using argon and acetylene gases. With an increase in the DC power, the Cr content increased from 14.7 to 29.7 at%. The Cr-C bond appeared when the Cr content was 17.6 at% or more. At a Cr content of 17.6 at%, the films showed an electrical conductivity of > 363 S/cm. The current density was 9.12 × 10-2 ㎂/㎠, and the corrosion potential was 0.240 V. Therefore, a Cr content of 17.6 at% was found to be optimum for the deposition of the Cr-DLC thin films. The Cr-DLC thin films developed in this study showed high conductivity and corrosion resistance, and hence, are suitable for applications in separators.