• 제목/요약/키워드: vapor deposited film

검색결과 643건 처리시간 0.029초

Water vapor barrier properties of polymer-like amorphous carbon deposited polyethylene naphthalate film

  • 김정용;박규대;송예슬;이희진;;김성룡
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.303.1-303.1
    • /
    • 2016
  • Polymer-like amorphous carbon films were deposited on polyethylene naphthalate (PEN) substrate by plasma-enhanced chemical vapor deposition (PECVD) and their water vapor transmission rates (WVTR) were tested. propane was used as precursors. To make a polymer-like amorphous carbon film the deposition rate, surface roughness, light transmittance, and WVTR of the films were characterized as a function of the precursor feed ratio and plasma power. The water vapor transmission rates of bare PEN film and single layer PAC on PEN substrate were 6.95 g/m2/day and 0.3 g/m2/day, respectively. The superior property the water vapor permeability of thin layers of PAC was attributed to uniform coverage and good adhesion between PAC film and PEN substrate.

  • PDF

EFFECT OF $SiF_4$ADDITION ON THE STRUCTURES OF SILICON FILMS DEPOSITED AT LOW TEMPERATURE BY REMOTE PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION

  • Xiaodong Li;Park, Young-Bae;Kim, Dong-Hwan;Rhee, Shi-Woo
    • 한국진공학회지
    • /
    • 제4권S2호
    • /
    • pp.64-68
    • /
    • 1995
  • Silicon films were deposited at $430^{\circ}C$ by remote plasma chemical vapor deposition(RPECVD) with a gas mixture of $Si_2H_6/SiF_4/H_2$. The silicon films deposited without and with $SiF_4$ were characterized using atomic force microscopy(AFM), transmission electron microscopy(TEM) and X-ray diffraction(XRD). Both silicon films have the same rugged surface morphology, but, the silicon film deposited with $SiF_4$ exhibits more rugged. The silicon film deposited without $SiF_4$ is amorphous, whereas the silicon film deposited with $SiF_4$ is polycrystalline with very small needle-like grains which are perpendicular to the substrate and uniformly distributed in the thickness of the film. The silicon film deposited with $SiF_4$ was found to have a preferred orientation along the growth direction with the<110> of the film parallel to the <111> of the substrate. The effect of $SiF_4$ during RPECVD was discussed.

  • PDF

Imaging on a Vapor Deposited Film by Photopolymerization of a Rod-Like Molecule Consisting of Two Diacetylenic Groups

  • Chang, Ji-Young;Kyung Seo;Cho, Hyun-Ju;Lee, Cheol-Ju;Lee, Changjin;Yongku Kang;Kim, Jaehyung
    • Macromolecular Research
    • /
    • 제10권4호
    • /
    • pp.204-208
    • /
    • 2002
  • A linear rod-like molecule, bis[4-(1,3-octadynyl)phenyl] terephthalate (2), consisting of two diacetylenic groups, was prepared. The unsymmetric diacetylene was prepared by the Cadiot-Chodkiewicz coupling reaction of 1-bromohexyne with 4-ethynylphenol and linked to a benzene core by an esterification reaction with terephthaloyl chloride in tetrahydrofuran. The thin film (200 nm thickness) of compound 2 was fabricated by the physical vapor deposition on a glass plate with a thermal evaporator. In the X-ray diffraction (XRD) study, the vapor deposited film on the glass plate showed peaks with d spacings of 19.4, 5.7, and 4.5 $\AA$. This XRD pattern was quite different from that observed for compound 2 isolated by recrystallization from methylene chloride/hexane. The vapor deposited film was polymerized by UV irradiation. Photopolymerization was carried out through a photomask, resulting in a patterned image, where the irradiated part became isotropic.

화학증착법에 의한 $PbTiO_3$ 박막의 재료 (Fabrication of $PbTiO_3$ Thin Film by Chemical Vapor Deposition Technique)

  • 윤순길;김호기
    • 한국세라믹학회지
    • /
    • 제23권6호
    • /
    • pp.33-36
    • /
    • 1986
  • The $PbTiO_3$is well known materials having remarkable ferroelectric piezoelectric and pyro-electric properties. Thin films of the lead titanite has been successfully fabricated by Chemical Vapor Deposition on the borosilicate glass and titanium substrate. The $PbTiO_3$ thin film deposited on the borosilicate glass using the $PbCl_2$, $TiCl_4$ dry oxygen and wet oxygen at different temperatures (50$0^{\circ}C$-$700^{\circ}C$) grows along the (001) preferred orientation. On the other hand the $PbTiO_3$ thin film deposited on the titanium substrate using the PbO grows along the (101) preferred orientation. Growth orientation of deposited $PbTiO_3$ depends on the reaction species irrespective of substrate materials. Maximum dielectic constant and loss tangent of the $PbTiO_3$ thin film deposited on the titanium substrate are about 90 and 0.02 respectively, . Deposition rates of $PbTiO_3$ deposited on the borosilicate glass and titanium substrate are 10-15 ${\mu}{\textrm}{m}$/hr. Titanium dioxide interlayer formed be-tween $PbTiO_3$ film and titanium substrate material, It improved the adhesion of the film.

  • PDF

Feature Scale Simulation of Selective Chemical Vapor Deposition Process

  • Yun, Jong-Ho
    • 한국진공학회지
    • /
    • 제4권S1호
    • /
    • pp.190-195
    • /
    • 1995
  • The feature scale model for selective chemical vapor deopsition process was proposed and the simulation was performed to study the selectivity and uniformity of deposited thin film using Monte Carlo method and string algorithm. The effect of model parameters such as sticking coefficient, aspect ratio, and surface diffusion coefficient on the deposited thin film pattern was improved for lower sticking coefficient and higher aspect ratio. It was revealed that the selectivity loss ascrives to the surface diffusion. Different values of sticking coefficients on Si and on SiO2 surface greatly influenced the deopsited thin film profile. In addition, as the lateral wall angle decreased, the selectively deposited film had improved uniformity except the vicinity of trench wall. The optimum eondition for the most flat selective film deposition pattern is the case with low sticking coefficient and slightly increased surface diffusion coefficient.

  • PDF

화학증착법에 의한 PbTiO3박막의 조성분석 및 전기적성질에 관한 연구 (Study on the Composition Analysis and Electrical Properties of Chemical Vapor Deposited PbTiO3 Thin Film)

  • 이혜용;윤순길;김호기
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.670-676
    • /
    • 1989
  • The PbTiO3 is well known materials having remarkable ferroelectric, piezoelectric, and pyroelectric properties. PbTiO3 thin films with a perovskite structure were successfully fabricated on titanium substrate by chemical vapor deposition. These films were characterized according to composition, crystal structure, and electrical properties. Semi-quantitative compositional analysis of the deposited films was made by Auger Electron Spectroscopy(AES). The PbTiO3 film deposited on titanium substrate at the deposition temperature 75$0^{\circ}C$, the Ti(C2H5O)4 fraction 0.15, and O2 partial pressure 0.06atm, has a columnar structure and grows with(001) preferred orientation, and has stoichiometric composition. A clear dielectric transition and offset in the dc conductivity near the transition temperature(48$0^{\circ}C$) were observed in the deposited lead titanate film.

  • PDF

Thermal Properties of Diamond Films Deposited by Chemical Vapor Depositon

  • Chae, Hee-Baik;Baik, Young-Joon
    • The Korean Journal of Ceramics
    • /
    • 제3권1호
    • /
    • pp.29-33
    • /
    • 1997
  • Four diamond films were deposited by the microwave plasma assisted chemical vapor deposition method varying CH4 concentration from 2.5 to 10% in the feeding gases. Thermal conductivity was measured on these free standing films by the steady state method from 80 K to 400K. They showed higher thermal conductivity as the film deposited with lower methane concentration. One exception, 7.79% methane concentration deposited film, was observed to be the highest thermal conductivity. Phonon scattering processes were considered to analyze the thermal conductivity with the full Callaway model. The grain size and the concentration of the extended and the point defects were used as the fitting parameters. Microstructure of diamond films was investigated with the scanning electron microscopy and Raman spectroscopy.

  • PDF

화학증착 탄화규소막의 방향성과 미세구조가 증착층의 기계적 성질에 미치는 영향 (Effects of Preferred Orientation and Microstructure on Mechanical Properties of Chemically Vapor Deposited SiC)

  • 김동주;김영욱;박상환;최두진;이준근
    • 한국세라믹학회지
    • /
    • 제32권10호
    • /
    • pp.1103-1110
    • /
    • 1995
  • Silicon carbide (SiC) films have been deposited on the isotropic graphite by chemical vapor deposition. Change of deposition parameters affected significantly the microstructure and preferred orientation of SiC films. Preferred orientation of SiC films was (111) or (220), and microstructure showed the startified structure consisting of small crystallite or faceted columnar structure depending on the deposition parameters. For microhardness, (111) oriented film and stratified structure were superior to (220) oriented film and faceted columnar structure, respectively. Surface of (111) oriented films was less rough than that of (220) oriented films. Adhesion force between graphite substrate and SiC films was above 100N for crystalline films and 49N for amorphous film.

  • PDF

마이크로웨이브 플라즈마에서 메탄-수소가스로부터 다이아몬드박막의 화학증착 (Chemical Vapor Deposition of Diamond Film from Methane-Hydrogen Gas in Microwave Plasma)

  • 이길용;제정호
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.331-340
    • /
    • 1989
  • In this study, it was tried to deposit diamond films from a mixture of CH4 and H2 by the microwave plasma chemical vapor deposition(MWCVD). The MWCVD process was designed and set up from the 2.45GHz microwave generator. And the diamond film was successfully deposited on silicon wafers from the mixture of methane and hydrogen. The microstructures of the deposited diamond films were studied by using the following deposition variables : (a) methane concentration(0.6-10%), (b) reaction pressure(10-100torr), and (c) the substrate temperature(450-76$0^{\circ}C$).

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • 한동석;문대용;박재형;강유진;윤돈규;신소라;박종완
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF