• Title/Summary/Keyword: vane

Search Result 784, Processing Time 0.03 seconds

Study on Variable Systems for Compressor and Turbine and its Control Scheme (압축기 정익, 터빈 노즐 가변 메카니즘 및 제어기법 연구)

  • Kim, Sangjo;Kim, Donghyun;Bae, Kyoungwook;Kim, Dae-il;Son, Changmin;Kim, Kuisoon;Lee, Daewoo;Go, Jeungsang;Choi, Dong-Whan;Kim, Myungho;Min, Seongki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.1-14
    • /
    • 2015
  • In case of a gas turbine engine for supersonic operation, the engine have a wide range of operating inlet mass flow rate and required high performance such as thrust and fuel consumption. Therefore, variable system and its optimal control logic are essentially needed. In this work, a method for performance prediction of a gas turbine engine with variable system compressor and its control scheme were developed. Conceptual design of compact acuation system for the operation of the variable system was also conducted. The performance of a low-bypass ratio mixed flow turbofan engine was analyzed, and it was observed that the surge margin of the engine is improved at off-design condition by applying the control scheme.

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

A Study on the Effects of Rotation Rate and Flow Rate on the Operating Characteristics in Centrifugal Pump (원심펌프에서 회전수 및 유량변화가 운전특성에 미치는 영향)

  • Lim, Kwang-Mook;Lee, Sung-Ill
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.56-62
    • /
    • 2019
  • This study examined effects of the operating characteristics of a pump according to the rotational speed of a pump and the change in flow rate when a centrifugal pump operates under the following conditions: regulated flow rate, head, rotational speed, and specific speed of 0.7 m/min, 8 m, 1750 rpm, an 182 (m, ㎥/min, rpm), respectively. The pump in the experiment did not have a guide vane and was connected directly to the rim, so that the rotational speed of the volute pump in a spiral or volute casing increased by 100 rpm from 1350 to 1750 rpm. The result of the relationship between the H-Q, L-Q, and 𝜂-Q characteristics and the dimensionless performance characteristics, such as the head coefficient, power coefficient and efficiency were studied. The change in pump performance could be estimated depending on the increase in the number of revolutions. The maximum efficiency of the pump was 52% with 1450 rpm, 0.165 ㎥/min flux, and 4.73 m of lift. The efficiency reached 50% with a maximum of 1750 rpm, 0.183 ㎥/min of flux, and 6.72 m of lift. The efficiency curve on the performance characteristics of the lift versus flux curve became oval not a curve from a quadratic equation that passes through the starting point according to the similarity law of the pump. Finally, when the flux coefficient increased, the power coefficient increased and the lift coefficient decreased. When the flux coefficient was 0.08, the maximum efficiency was 52%. Therefore, the change in flux affects the driving characteristics.

Numerical Study for Flow Uniformity in Selective Catalytic Reduction(SCR) Process (SCR 공정에서 반응기 내부의 유동 균일화를 위한 수치적 연구)

  • Jung, Yu-Jin;Hong, Sung-Gil;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4666-4672
    • /
    • 2011
  • Performance of NOx removal in SCR(Selective Catalytic Reduction) process depends on such various factors as catalyst factors (catalyst composition, catalyst form, space velocity, etc.), temperature of exhaust gas, and velocity distribution of exhaust gas. Especially the flow uniformity of gas stream flowing into the catalyst layer is believed to be the most important factor to influence the performance. In this research, the flow characteristics of a SCR process at design stage was simulated, using 3-dimensional numerical analysis method, to confirm the uniformity of the gas stream. In addition, the effects of guide vanes, baffles, and perforated plates on the flow uniformity for the inside and catalyst layer of the reactor were studied in order to optimize the flow uniformity inside the SCR reactor. It was found that the installation of a guide vane at the inlet duct L-tube part and the installation of a baffle at the upper part is very effective in avoiding chaneling inside the reactor. It was also found that additional installation of a perforated plate at the lower part of the potential catalyst layer buffers once more the flow for very uniform distribution of the gas stream.

Electron Beam Welding on Module-typed Turbine Diaphragm (모듈 형 터빈 다이아프람의 전자빔 용접 기술)

  • Kim, Yong-Jai;Shim, Duck-Nam;Jung, In-Chul
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.107-107
    • /
    • 2009
  • 모듈 형 터빈 다이아프람은, 아우터 링(outer ring), 스팀 패스(steam path)와 이너 웹(inner web)의 원형 형상을 갖는 세 부분을 조립하여 원주 방향의 용접 조인트를 형성하는 기존의 다이아프람 형태가 아니라, 아우터 슈라우드(outer shroud), 베인(vane)과 이너 슈라우드(inner shroud)의 세 부분이 하나의 모듈을 이루고 이러한 모듈을 원주 방향으로 조립하여 방사 방향의 조인트를 형성한다. 전자빔 용접은 이와 같은 방사 방향의 조인트를 수직으로 가로지르는 용접 궤적을 따라 진행되며, 용접 패스에 따라 형성되는 용융 비드의 단면적만큼 인접하는 두 모듈을 접합시킨다. 이 경우 용융 비드의 단면적과 형상은 두 모듈의 결합 강도를 결정하는 중요한 요소가 되어, 제작 시 다이아프람의 크기와 두께에 따라 용입 깊이와 평균 단면 비드 폭을 규정하고 있다. 본 연구에서는 용입 깊이와 단면 비드 폭의 요구 조건을 만족하면서 결함이 없는 건전한 용접부를 얻을 수 있는 최적 용접 조건을 도출하는데 그 목적이 있다. 이를 위해 플레이트 시편과 모듈 시편을 사용한 기초 실험과 유사 시제품(semi-mockup) 실험을 실시하였다. 플레이트 기초 실험을 통해 전자빔 주요 변수인 빔 전류, 초점 위치, 용접 속도, 빔 진동 폭 변화에 따른 용융 비드 형상 변화를 관찰하였고, 빔 전류가 용입 깊이에 가장 큰 영향을 주는 인자임을 확인하여 요구 용입 깊이 별 적정 빔 전류 값을 설정하였다. 용접 속도는 생산성 측면에서 균열이 발생하지 않는 범위에서 가능하면 가장 큰 값을 사용하였고, 빔 진동 폭은 초점 위치와 함께 단면 비드 형상 결정에 많은 영향을 주는 인자로 확인되어 균열이 없는 가장 이상적인 단면 비드 형상인 완만한 쐐기 형태가 되도록 설정하였다. 이 후 실제 제품 폭과 용접 패스를 갖는 블록 모듈 실험을 통해 설정 용접 변수의 적용성과 균열 발생 여부를 확인하였고, 이 때 적용 제품 폭이 30 mm 이하이며 요구 용입 깊이가 50 mm 이상의 경우에서 비드 중앙부 균열이 발생함을 관찰하였다. 따라서 해당 영역의 제품에는 균열 저항성이 높도록 용접 속도와 빔 진동 폭을 줄여 최적 용접 변수를 새롭게 설정하였으며, 이를 유사 시제품 실험에 적용하여 최종적으로 용접 변수 안정성을 검증하였다. 이러한 실험을 통해 확인된 최적 용접 조건을 실 제품 제작에 적용하여 모듈 형 터빈 다이아프람 전자빔 용접 제작을 성공적으로 완료할 수 있었다.

  • PDF

Effect of Wind Break on the Early Growth of Pinus thunbergii at Saemangum Sea-wall (새만금 방조제에서 곰솔의 초기 생장에 미치는 방풍 시설 설치 효과)

  • Kim, Jeong-Hwan;Lim, Joo-Hoon;Seo, Kyung-Won;Jeong, Yong Ho;Um, Tae-Won
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.210-218
    • /
    • 2013
  • The sea breeze shows different characteristics compared to land breeze, such as high wind speed and more rapider shift period. One of the major factors affecting plant early growth is wind speed. In the early growth stage, tree growth-rates rise with decreasing wind speed. Thus, the study was performed to identify wind break effects on wind characteristics and tree growth. The wind break used in this study was about 130 meters length and 3 meters height, made up with poly-ethylene (with 40% openness). We installed one vane and fifteen anemographs at three different heights (1, 2 and 3 meters) on the inner and outer wind break areas. The wind characteristic and plant growth data were collected from Jun. 2011 to Oct. over 2012. The wind rose of the Saemangum seawall area presented the north (21.5%) and it was followed by north-west (18.1%), east (14.9%) and north-east (13.7%) and the remainder with other directions. Wind speeds at height were different. The tree height was 159.6 cm at inside and 129.6 cm at outside. The diameter at root-collar was 36.9 mm at inside and 32.6 mm at outside from wind break.

Characteristics of Undrained Shear Strength and Development of Modified SPT on Very Soft Ground in Korea (국내 초연약지반의 비배수전단강도 특성 및 개량표준관입시험기 개발)

  • Jung, Hyuksang;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.105-115
    • /
    • 2009
  • In this study, SPT, FV, and CPT tests were performed at five very soft grounds in southern coast of Korea to characterize the $S_u$ of very soft ground. In addition, a new modified SPT that is applicable to very soft ground was developed. Tests results showed that in very soft ground (N<2), the $S_u$ was lower than 12.5 kPa using the empirical N-Su correlation, and lower than 50 kPa and 65 kPa using vane shear test and CPT, respectively. It was shown that the results of in-situ tests were higher than those estimated from the N-Su correlation, and it was also demonstrated that the range of estimated $S_u$ was quite wide. New correlations that relate the modified SPT $N_m$ with Su from FV and CPT were developed, which are $S_u=1.76N_m-10.47$ and $S_u=1.82N_m-9.71$, respectively.

  • PDF

A Proposal of Flow Limit for Soils at Zero Undrained Shear Strength (흙의 비배수전단강도가 0이 되는 함수비인 흐름한계의 제안)

  • Park, Sung-Sik;Nong, Zhenzhen
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.11
    • /
    • pp.73-84
    • /
    • 2013
  • When a slope failure or a debris flow occurs, a shear strength on failure plane becomes nearly zero and soil begins to flow like a non-cohesive liquid. A consistency of cohesive soils changes as a water content increases. Even a cohesive soil existing at liquid limit state has a small amount of shear strength. In this study, a water content, at which a shear strength of cohesive soils is zero and then cohesive soils will start to flow, was proposed. Three types of clays (kaolinite, bentonite and kaolinite (50%)+bentonite (50%)) were mixed with three different solutions (distilled water, sea water and microbial solution) at liquid limit state and then their water contents were increased step by step. Then, their undrained shear strength was measured using a portable vane shear device called Torvane. The ranges of undrained shear strength at liquid and plastic limits are 3.6-9.2 kPa and 24-45 kPa, respectively. On the other hand, the water content that corresponds to the value of the undrained shear strength changing most rapidly is called flow water content. The flow limit refers to the water content when undrained shear strength of cohesive soils is zero. In order to investigate the relationship between liquid limit and flow limit, the cohesive index was defined as a value of the difference between flow limit and liquid limit. The new plasticity index was defined as the value of difference between flow limit and plastic limit. The new liquidity index was also defined using flow limit. The values of flow limit are 1.5-2 times higher than those of liquid limit. At the same time, the values of new plasticity index are 2-5.5 times higher than those of original plasticity index.

A CFD Study on Aerodynamic Performances by Geometrical Configuration of Guide Vanes in a Denitrification Facility (탈질 설비 내 안내 깃의 기하학적 형상에 따른 공력 성능에 대한 전산 해석적 연구)

  • Chang-Sik, Lee;Min-Kyu, Kim;Byung-Hee, Ahn;Hee-Taeg, Chung
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.316-322
    • /
    • 2022
  • The flow pattern at the inlet of the catalyst layer in a selective catalytic reduction (SCR) system is one of the key parameters influencing the performance of the denitrification process. In the curved diffusing parts between the ammonia injection grids and the catalyst layers, guide vanes are installed to improve flow uniformity. In the present study, a numerical simulation has been performed to investigate the effect of the geometrical configuration of the guide vanes on the aerodynamic characteristics of a denitrification facility. This application has been made to the existing SCR process in a large-scaled coal-fired power plant. The flow domain to be solved covers the whole region of the flow passages from the exit of the ammonia injection gun to the exit of the catalyst layers. ANSYS-Fluent was used to calculate the three-dimensional steady viscous flow fields with the proper turbulence model fitted to the flow characteristics. The root mean square of velocity and the pressure drop inside the flow passages were chosen as the key performance parameters. Four types of guides vanes were proposed to improve the flow quality compared to the current configuration. The numerical results showed that the type 4 configuration was the most effective at improving the aerodynamic performance in terms of flow uniformity and pressure loss.

Evaluating rheological properties of excavated soil for EPB shield TBM with foam and polymer (폼과 폴리머를 활용한 EPB 쉴드 TBM 굴착토의 유동학적 특성 평가)

  • Byeonghyun Hwang;Minkyu Kang;Kibeom Kwon;Jeonghun Yang;Hangseok Choi
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.387-401
    • /
    • 2023
  • The Earth Pressure Balanced (EPB) Shield Tunnel Boring Machine (TBM) is widely employed for constructing urban underground spaces due to its minimal vibration and low noise levels. The injection of additives offers several advantages, including maintaining shield chamber pressure, reducing shear strength, minimizing cutter wear, and decreasing the permeability of the excavated soil. This technique is known as soil conditioning and involves the application of additives such as foam, polymer, and bentonite slurry. In this study, weathered granite soil commonly encountered at domestic tunnel sites was used as a soil specimen. Foam and polymer were applied as additives to assess the rheological properties of conditioned soils. The workability was evaluated through slump tests, while the rheological properties were assessed through laboratory pressurized vane shear tests conducted under the same conditions. Specially, the polymer was applied under specific conditions with low workability with high slump values, with the aim of evaluating the impact of polymer application. The test results revealed that with an increase in the Foam Injection Ratio (FIR), the slump value also increased, while the torque, peak strength, yield stress, apparent viscosity, and thixotropic area decreased. Conversely, an increase in the Polymer Injection Ratio (PIR) led to results opposite to those of FIR. Additionally, a correlation between the slump value and yield stress was proposed. When comparing conditions with only foam applied to those with both foam and polymer applied, even with similar slump values, the yield stress was found to be lower in the latter conditions.