• Title/Summary/Keyword: vanadium doping

Search Result 26, Processing Time 0.032 seconds

Selective doping of Li-rich layered oxide cathode materials for high-stability rechargeable Li-ion batteries

  • Han, Dongwook;Park, Kwangjin;Park, Jun-Ho;Yun, Dong-Jin;Son, You-Hwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.180-186
    • /
    • 2018
  • We report the discovery of Li-rich $Li_{1+x}[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y]O_2$ as a cathode material for rechargeable lithium-ion batteries in which a small amount of tetravalent vanadium ($V^{4+}$) is selectively and completely incorporated into the manganese sites in the lattice structure. The unwanted oxidation of vanadium to form a $V_2O_5-like$ secondary phase during high-temperature crystallization is prevented by uniformly dispersing the vanadium ions in coprecipitated $[(Ni_{0.225}Co_{0.15}Mn_{0.625})_{1-y}V_y](OH)_2$ particles. Upon doping with $V^{4+}$ ions, the initial discharge capacity (>$275mA\;h\;g^{-1}$), capacity retention, and voltage decay characteristics of the Li-rich layered oxides are improved significantly in comparison with those of the conventional undoped counterpart.

Oxygen Deficiency, Hydrogen Doping, and Stress Effects on Metal-Insulator Transition in Single-Crystalline Vanadium Dioxide Nanobeams

  • 홍웅기;장성진;박종배;배태성
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.424.1-424.1
    • /
    • 2014
  • Vanadium dioxide (VO2) is a strongly correlated oxide exhibiting a first-order metal-insulator transition (MIT) that is accompanied by a structural phase transition from a low temperature monoclinic phase to a high-temperature rutile phase. VO2 has attracted significant attention because of a variety of possible applications based on its ultrafast MIT. Interestingly, the transition nature of VO2 is significantly affected by stress due to doping and/or interaction with a substrate and/or surface tension as well as defects. Accordingly, there have been considerable efforts to understand the influences of such factors on the phase transition and the fundamental mechanisms behind the MIT behavior. Here, we present the influences of oxygen deficiency, hydrogen doping, and substrate-induced stress on MIT phenomena in single-crystalline VO2 nanobeams. Specifically, the work function and the electrical resistance of the VO2 nanobeams change with the compositional variation due to the oxygen-deficiency-related defects. In addition, the VO2 nanobeams during exposure to hydrogen gas exhibit the reduction of transition temperature and the complex phase inhomogenieties arising from both substrate-induced stress and the formation of the hydrogen doping-induced metallic rutile phase.

  • PDF

Yttrium Doping Effect on Varistor Properties of Zinc-Vanadium-Based Ceramics

  • Nahm, Choon-W.
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.504-509
    • /
    • 2018
  • The influence of yttrium doping on varistor properties of zinc-vanadium-based ceramics was comprehensively investigated. The average grain size varied slightly between 5.2 and $5.5{\mu}m$ as the yttrium content increased; and similarly, the sintered density varied slightly between 5.47 and $5.51g/cm^3$. The threshold field exhibited a maximum value (5387 V/cm) when the yttrium content was 0.1 mol%. The highest nonlinear exponent (67) was obtained when the yttrium content was 0.05 mol%. The donor concentration increased in the range of $(2.46-5.56){\times}10^{17}cm^{-3}$ as the yttrium content increased, and the maximum barrier height was obtained (1.24 eV) when the yttrium content reached 0.05 mol%.

Pt이 도핑된 박막 전지용 비정질 산화바나듐 박막의 구조적 변화 (Structure evolution of Pt doped amorphous $V_{2}O_{5}$ cathode film for thin film battery)

  • 김한기;전은정;옥영우;성태연;조원일;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.889-892
    • /
    • 2000
  • We have investigated the Pt doping effect on structural and electrochemical properties of amorphous vanadium oxide film, grown by radio frequency magnetron sputtering. Room temperature charge-discharge measurements based on a half-cell with a constant current clearly indicated that the Pt doping could improve the cyclibility of V$_2$O$_{5}$ cathode film. Using glancing angle x-ray diffraction (GXRD) and high resolution transmission electron microscopy (HRTEM) analysis, we found that the Pt doping with l0W r.f. power induce more random amorphous structure than undoped V$_2$O$_{5}$ film. As the r.f. power of Pt increases, large amount of Pt incorporates into amorphous V$_2$O$_{5}$ and makes PtOx microcrystalline phase in amorphous matrix. This result suggests that the semicondcuting PtOx microcrystalline phase in amorphous matrix lead to a drastically faded cyclibility of 50W Pt doped V$_2$O$_{5}$ cathode film. Possible explanations are given to describe the Pt doping effect on cyclibility of vanadium oxide cathode film.de film.

  • PDF

Pt Doping Mechanism of Vanadium Oxide Cathode Film Grown on ITO Glass for Thin Film Battery

  • Kim, Han-Ki;Seong, Tae-Yeon;Jeon, Eun-Jeong;Cho, Won-Il;Yoon, Young-Soo
    • 한국세라믹학회지
    • /
    • 제38권1호
    • /
    • pp.100-105
    • /
    • 2001
  • An all solid-state thin film battery (TFB) was fabricated by growing, undoped and Pt-doped vanadium oxide cathode film ( $V_2$ $O_{5}$ ) on I $n_2$ $O_3$: Sn coated glass, respectively. Room temperature charge-discharge measurements based on Li/Lipon/ $V_2$ $O_{5}$ full-cell structure with a constant current clearly shows that the Pt-doped $V_2$ $O_{5}$ cathode film is superior, in terms of cyclibility. X-ray diffraction (XRD) results indicate that the Pt doping process induces a more random amorphous structure than an undoped $V_2$ $O_{5}$ film. In addition to its modified structure, the Pt-doped $V_2$ $O_{5}$ film has a smoother surface than the undoped sample. Compared to an undoped $V_2$ $O_{5}$ film, the Pt doped $V_2$ $O_{5}$ cathode film has a higher electron conductivity. We hypothesize that the addition of Pt alters electrochemical performance in a manner of making more random amorphous structure and gives an excess electron by replacing the $V^{+5}$. Possible mechanisms are discussed for the observed Pt doping effect on structural and electrochemical properties of vanadium oxide cathode films, which are grown on I $n_2$ $O_3$: Sn coated glass.

  • PDF

플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석 (Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries)

  • 김민경;이동휘;여찬규;최수연;최치원;윤현민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

The Synthesis of Vanadium-Doped Forsterite by the $H_2O_2$-Assisted Sol-Gel Method, and the Growth of Single Crystals of Vanadium-Doped Forsterite by the Floating Zone Method

  • 박동곤;Mikio Higuchi;Rudiger Dieckmann;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.927-933
    • /
    • 1998
  • Polycrystalline powder of vanadium-doped forsterite (Vδ $Mg_2SiO_4$) was synthesized by the $H_2O_2$-assisted sol-gel method. The vanadium dopant, which was added as VO$(OMe)_3$ in methanol, went through several redox reactions as the sol-gel reaction proceeded. Upon adding VO$(OMe)_3$ to a mixture of $Mg(OMe)_2$ and Si$(OEt)_4$ in methanol, V(V) reduced to V(IV). As hydrolysis reaction proceeded, the V(IV) oxidized all back to V(V). Apparently, some of the V(V) reduced to V(IV) during subsequent gelation by condensation reaction. The V(IV) remained even after heat treatment of the gel in highly oxidizing atmosphere. The crystallization of the xerogel around 880 ℃ readily produced single phase forsterite without any minor phase. Using the polycrystalline powder as feeding stock, single crystals of vanadium-doped forsterite were grown by the floating zone method in oxidizing or reducing atmosphere. The doping was limited in low level because of the high partitioning of the vanadium in liquid phase during melting. The greenish single crystal absorbed visible light of 700∼1100 nm. But, no emission was obtained in near infrared range.

탄소전극의 질소 및 산소 도핑에 따른 바나듐 레독스-흐름전지 양극 및 음극에서의 촉매화학적 특성 연구 (Performance of Carbon Cathode and Anode Electrodes Functionalized by N and O Doping Treatments for Charge-discharge of Vanadium Redox Flow Battery)

  • 임혜빈;김지연;이정석;이두환
    • 청정기술
    • /
    • 제23권3호
    • /
    • pp.308-313
    • /
    • 2017
  • 본 연구에서는 Graphite Felt (GF) 전극의 표면에 산소와 질소의 도핑을 통하여 전기화학적 특성을 개선하고, 이의 촉매화학적 효과를 바나듐 레독스 흐름전지의 양극과 음극의 특성비교를 통하여 관찰하였다. 탄소전극 표면의 산소와 질소 동시 도핑은 GF 샘플을 773 K에서 암모니아-공기 ($NH_3=50%$, $O_2=10%$) 혼합가스에 노출시켜 Chemical Vapor Deposition (CVD) 방법으로 제조하였다. 이러한 산소-질소 동시 도핑의 전기화학적 효과는 산소만으로 도핑 처리된 GF 샘플과 비교하여 분석, 평가하였다. 탄소전극 샘플들의 표면 구조와 화학적 조성은 Scanning Electron Microscopy (SEM)와 X-ray Photoelectron Spectroscopy (XPS) 방법을 통하여 분석하였다. 결과물로 얻어진 탄소전극은 바나듐 레독스-흐름전지의 양극과 음극에 동시 적용하여 충-방전 사이클을 진행하고, 각 전극이 흐름전지의 효율과 양극과 음극에서의 전기화학적 특성에 미치는 효과를 비교하여 분석하였다. 산소와 질소의 동시 도핑으로 처리된 GF 전극은 산소만으로 활성화된 전극에 비하여 흐름전지의 전압 및 에너지 효율에서 2% 이상의 향상 효과를 보여주었다. 특히, 탄소전극 표면의 산소-질소의 동시 도핑은 음극반응에서 우수한 전기화학적 특성을 유도하는 것을 확인하였다.